問題を入力...
三角関数 例
ステップ 1
分子を0に等しくします。
ステップ 2
ステップ 2.1
方程式の両辺にを足します。
ステップ 2.2
の各項をで割り、簡約します。
ステップ 2.2.1
の各項をで割ります。
ステップ 2.2.2
左辺を簡約します。
ステップ 2.2.2.1
の共通因数を約分します。
ステップ 2.2.2.1.1
共通因数を約分します。
ステップ 2.2.2.1.2
をで割ります。
ステップ 2.3
方程式の両辺の逆余接をとり、余接の中からを取り出します。
ステップ 2.4
右辺を簡約します。
ステップ 2.4.1
の値を求めます。
ステップ 2.5
余接関数は、第一象限と第三象限で正となります。2番目の解を求めるには、から参照角を足し、第四象限で解を求めます。
ステップ 2.6
について解きます。
ステップ 2.6.1
括弧を削除します。
ステップ 2.6.2
括弧を削除します。
ステップ 2.6.3
とをたし算します。
ステップ 2.7
の周期を求めます。
ステップ 2.7.1
関数の期間はを利用して求めることができます。
ステップ 2.7.2
周期の公式のをで置き換えます。
ステップ 2.7.3
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 2.7.4
をで割ります。
ステップ 2.8
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
、任意の整数
ステップ 3
とをにまとめます。
、任意の整数
ステップ 4
各解をに代入して解き、検算します。
、任意の整数