問題を入力...
三角関数 例
ステップ 1
ステップ 1.1
式が未定義である場所を求めます。
ステップ 1.2
対数を無視して、が分子の次数、が分母の次数である有理関数を考えます。
1. のとき、x軸は水平漸近線です。
2. のとき、水平漸近線は線です。
3. のとき、水平漸近線はありません(斜めの漸近線があります)。
ステップ 1.3
とを求めます。
ステップ 1.4
なので、x軸は水平漸近線です。
ステップ 1.5
対数関数と三角関数の斜めの漸近線はありません。
斜めの漸近線がありません
ステップ 1.6
すべての漸近線の集合です。
垂直漸近線:
水平漸近線:
垂直漸近線:
水平漸近線:
ステップ 2
ステップ 2.1
式の変数をで置換えます。
ステップ 2.2
結果を簡約します。
ステップ 2.2.1
をで割ります。
ステップ 2.2.2
1のすべての数の累乗は1です。
ステップ 2.2.3
の自然対数はです。
ステップ 2.2.4
最終的な答えはです。
ステップ 2.3
を10進数に変換します。
ステップ 3
ステップ 3.1
式の変数をで置換えます。
ステップ 3.2
結果を簡約します。
ステップ 3.2.1
を対数の外に移動させて、を展開します。
ステップ 3.2.2
の共通因数を約分します。
ステップ 3.2.2.1
共通因数を約分します。
ステップ 3.2.2.2
をで割ります。
ステップ 3.2.3
最終的な答えはです。
ステップ 3.3
を10進数に変換します。
ステップ 4
ステップ 4.1
式の変数をで置換えます。
ステップ 4.2
結果を簡約します。
ステップ 4.2.1
をに書き換えます。
ステップ 4.2.2
対数の中のを移動させてを簡約します。
ステップ 4.2.3
の指数を掛けます。
ステップ 4.2.3.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 4.2.3.2
とをまとめます。
ステップ 4.2.4
最終的な答えはです。
ステップ 4.3
を10進数に変換します。
ステップ 5
対数関数は、における垂直漸近線と点を利用してグラフにすることができます。
垂直漸近線:
ステップ 6