三角関数 例

恒等式を証明する tan(x)csc(x)^2-tan(x)=cot(x)
ステップ 1
左辺から始めます。
ステップ 2
ピタゴラスの定理を当てはめます。
タップして手順をさらに表示してください…
ステップ 2.1
を並べ替えます。
ステップ 2.2
で因数分解します。
ステップ 2.3
で因数分解します。
ステップ 2.4
で因数分解します。
ステップ 2.5
項を並べ替えます。
ステップ 2.6
ピタゴラスの定理を当てはめます。
ステップ 3
正弦と余弦に変換します。
タップして手順をさらに表示してください…
ステップ 3.1
商の恒等式を利用してを正弦と余弦で書きます。
ステップ 3.2
商の恒等式を利用してを正弦と余弦で書きます。
ステップ 3.3
積の法則をに当てはめます。
ステップ 4
簡約します。
タップして手順をさらに表示してください…
ステップ 4.1
まとめる。
ステップ 4.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.2.1
で因数分解します。
ステップ 4.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.2.2.1
で因数分解します。
ステップ 4.2.2.2
共通因数を約分します。
ステップ 4.2.2.3
式を書き換えます。
ステップ 4.3
の共通因数を約分します。
ステップ 5
に書き換えます。
ステップ 6
両辺が等しいことが示されているので、この方程式は恒等式です。
は公式です