三角関数 例

グラフ化する y=cos(x)+3
ステップ 1
を利用して振幅、周期、位相シフト、垂直偏移を求めるための変数を求めます。
ステップ 2
偏角を求めます。
偏角:
ステップ 3
公式を利用して周期を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
の周期を求めます。
タップして手順をさらに表示してください…
ステップ 3.1.1
関数の期間はを利用して求めることができます。
ステップ 3.1.2
周期の公式ので置き換えます。
ステップ 3.1.3
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 3.1.4
で割ります。
ステップ 3.2
の周期を求めます。
タップして手順をさらに表示してください…
ステップ 3.2.1
関数の期間はを利用して求めることができます。
ステップ 3.2.2
周期の公式ので置き換えます。
ステップ 3.2.3
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 3.2.4
で割ります。
ステップ 3.3
三角関数の加法/減法の周期は個々の周期の最大です。
ステップ 4
公式を利用して位相シフトを求めます。
タップして手順をさらに表示してください…
ステップ 4.1
関数の位相シフトはから求めることができます。
位相シフト:
ステップ 4.2
位相シフトの方程式のの値を置き換えます。
位相シフト:
ステップ 4.3
で割ります。
位相シフト:
位相シフト:
ステップ 5
三角関数の特性を記載します。
偏角:
周期:
位相シフト:なし
垂直偏移:
ステップ 6
数点を選択し、グラフにします。
タップして手順をさらに表示してください…
ステップ 6.1
で点を求めます。
タップして手順をさらに表示してください…
ステップ 6.1.1
式の変数で置換えます。
ステップ 6.1.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.1.2.1
の厳密値はです。
ステップ 6.1.2.2
をたし算します。
ステップ 6.1.2.3
最終的な答えはです。
ステップ 6.2
で点を求めます。
タップして手順をさらに表示してください…
ステップ 6.2.1
式の変数で置換えます。
ステップ 6.2.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.2.1
の厳密値はです。
ステップ 6.2.2.2
をたし算します。
ステップ 6.2.2.3
最終的な答えはです。
ステップ 6.3
で点を求めます。
タップして手順をさらに表示してください…
ステップ 6.3.1
式の変数で置換えます。
ステップ 6.3.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.2.1.1
第一象限で等しい三角の値を持つ角度を求め、参照角を当てはめます。余弦は第二象限で負であるため、式を負にします。
ステップ 6.3.2.1.2
の厳密値はです。
ステップ 6.3.2.1.3
をかけます。
ステップ 6.3.2.2
をたし算します。
ステップ 6.3.2.3
最終的な答えはです。
ステップ 6.4
で点を求めます。
タップして手順をさらに表示してください…
ステップ 6.4.1
式の変数で置換えます。
ステップ 6.4.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.4.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 6.4.2.1.1
第一象限で等しい三角の値を持つ角度を求め、参照角を当てはめます。
ステップ 6.4.2.1.2
の厳密値はです。
ステップ 6.4.2.2
をたし算します。
ステップ 6.4.2.3
最終的な答えはです。
ステップ 6.5
で点を求めます。
タップして手順をさらに表示してください…
ステップ 6.5.1
式の変数で置換えます。
ステップ 6.5.2
結果を簡約します。
タップして手順をさらに表示してください…
ステップ 6.5.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 6.5.2.1.1
角度が以上より小さくなるまでの回転を戻します。
ステップ 6.5.2.1.2
の厳密値はです。
ステップ 6.5.2.2
をたし算します。
ステップ 6.5.2.3
最終的な答えはです。
ステップ 6.6
表に点を記載します。
ステップ 7
偏角、周期、位相シフト、垂直偏移、および点を使用して三角関数をグラフに描くことができます。
偏角:
周期:
位相シフト:なし
垂直偏移:
ステップ 8