三角関数 例

三角公式への変換 cot(theta)sin(theta)
ステップ 1
正弦と余弦について書き換え、次に共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.1
正弦と余弦に関してを書き換えます。
ステップ 1.2
共通因数を約分します。
ステップ 2
複素数の三角法の式です。ここで、は絶対値、は複素数平面上にできる角です。
ステップ 3
複素数の係数は、複素数平面上の原点からの距離です。
ならば
ステップ 4
の実際の値を代入します。
ステップ 5
を求めます。
タップして手順をさらに表示してください…
ステップ 5.1
を正数乗し、を得ます。
ステップ 5.2
をたし算します。
ステップ 5.3
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 6
複素平面上の点の角は、複素部分の実部分に対する逆正切です。
ステップ 7
の値を代入します。