三角関数 例

恒等式を証明する csc(theta)^2=1+cot(theta)^2
csc2(θ)=1+cot2(θ)csc2(θ)=1+cot2(θ)
ステップ 1
右辺から始めます。
1+cot2(θ)
ステップ 2
ピタゴラスの定理を当てはめます。
csc2(θ)
ステップ 3
両辺が等しいことが示されているので、この方程式は恒等式です。
csc2(θ)=1+cot2(θ)は公式です
 [x2  12  π  xdx ]