問題を入力...
三角関数 例
ステップ 1
余弦の定義を利用して単位円直角三角形の既知の辺を求めます。象限は、それぞれの値の符号を決定します。
ステップ 2
単位円の三角形の対辺を求めます。隣接辺と斜辺が分かっているので、ピタゴラスの定理を利用して残りの辺を求めます。
ステップ 3
方程式の既知数を置き換えます。
ステップ 4
ステップ 4.1
を否定します。
対辺
ステップ 4.2
1のすべての数の累乗は1です。
対辺
ステップ 4.3
を正数乗し、を得ます。
対辺
ステップ 4.4
にをかけます。
対辺
ステップ 4.5
とをたし算します。
対辺
ステップ 4.6
のいずれの根はです。
対辺
ステップ 4.7
にをかけます。
対辺
対辺
ステップ 5
ステップ 5.1
正弦の定義を利用しての値を求めます。
ステップ 5.2
既知数に代入します。
ステップ 5.3
をで割ります。
ステップ 6
ステップ 6.1
正接の定義を利用しての値を求めます。
ステップ 6.2
既知数に代入します。
ステップ 6.3
で割るとにおいて正切が未定義になります。
未定義
ステップ 7
ステップ 7.1
余接の定義を利用しての値を求めます。
ステップ 7.2
既知数に代入します。
ステップ 7.3
をで割ります。
ステップ 8
ステップ 8.1
正割の定義を利用しての値を求めます。
ステップ 8.2
既知数に代入します。
ステップ 8.3
で割るとにおいて正割が未定義になります。
未定義
ステップ 9
ステップ 9.1
余割の定義を利用しての値を求めます。
ステップ 9.2
既知数に代入します。
ステップ 9.3
をで割ります。
ステップ 10
各三角関数の値の解です。
未定義