問題を入力...
三角関数 例
ステップ 1
方程式の両辺にを足します。
ステップ 2
方程式の両辺の逆余弦をとり、余弦の中からを取り出します。
ステップ 3
ステップ 3.1
の厳密値はです。
ステップ 4
ステップ 4.1
の各項をで割ります。
ステップ 4.2
左辺を簡約します。
ステップ 4.2.1
の共通因数を約分します。
ステップ 4.2.1.1
共通因数を約分します。
ステップ 4.2.1.2
をで割ります。
ステップ 4.3
右辺を簡約します。
ステップ 4.3.1
をで割ります。
ステップ 5
余弦関数は、第一象限と第四象限で正となります。2番目の解を求めるには、から参照角を引き、第四象限で解を求めます。
ステップ 6
ステップ 6.1
簡約します。
ステップ 6.1.1
にをかけます。
ステップ 6.1.2
とをたし算します。
ステップ 6.2
の各項をで割り、簡約します。
ステップ 6.2.1
の各項をで割ります。
ステップ 6.2.2
左辺を簡約します。
ステップ 6.2.2.1
の共通因数を約分します。
ステップ 6.2.2.1.1
共通因数を約分します。
ステップ 6.2.2.1.2
をで割ります。
ステップ 6.2.3
右辺を簡約します。
ステップ 6.2.3.1
との共通因数を約分します。
ステップ 6.2.3.1.1
をで因数分解します。
ステップ 6.2.3.1.2
共通因数を約分します。
ステップ 6.2.3.1.2.1
をで因数分解します。
ステップ 6.2.3.1.2.2
共通因数を約分します。
ステップ 6.2.3.1.2.3
式を書き換えます。
ステップ 7
ステップ 7.1
関数の期間はを利用して求めることができます。
ステップ 7.2
周期の公式のをで置き換えます。
ステップ 7.3
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 7.4
との共通因数を約分します。
ステップ 7.4.1
をで因数分解します。
ステップ 7.4.2
共通因数を約分します。
ステップ 7.4.2.1
をで因数分解します。
ステップ 7.4.2.2
共通因数を約分します。
ステップ 7.4.2.3
式を書き換えます。
ステップ 8
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
ステップ 9
答えをまとめます。
、任意の整数