問題を入力...
三角関数 例
ステップ 1
複素数の三角法の式です。ここで、は絶対値、は複素数平面上にできる角です。
ステップ 2
複素数の係数は、複素数平面上の原点からの距離です。
ならば
ステップ 3
との実際の値を代入します。
ステップ 4
ステップ 4.1
を正数乗し、を得ます。
ステップ 4.2
の指数を掛けます。
ステップ 4.2.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 4.2.2
にをかけます。
ステップ 4.3
とをたし算します。
ステップ 4.4
をに書き換えます。
ステップ 4.4.1
をで因数分解します。
ステップ 4.4.2
をに書き換えます。
ステップ 4.4.3
をに書き換えます。
ステップ 4.4.4
を移動させます。
ステップ 4.4.5
をに書き換えます。
ステップ 4.5
累乗根の下から項を取り出します。
ステップ 5
複素平面上の点の角は、複素部分の実部分に対する逆正切です。
ステップ 6
との値を代入します。