三角関数 例

三角公式への変換 1+tan(x)^2
ステップ 1
項を並べ替えます。
ステップ 2
ピタゴラスの定理を当てはめます。
ステップ 3
複素数の三角法の式です。ここで、は絶対値、は複素数平面上にできる角です。
ステップ 4
複素数の係数は、複素数平面上の原点からの距離です。
ならば
ステップ 5
の実際の値を代入します。
ステップ 6
を求めます。
タップして手順をさらに表示してください…
ステップ 6.1
を正数乗し、を得ます。
ステップ 6.2
の指数を掛けます。
タップして手順をさらに表示してください…
ステップ 6.2.1
べき乗則を当てはめて、指数をかけ算します。
ステップ 6.2.2
をかけます。
ステップ 6.3
をたし算します。
ステップ 6.4
に書き換えます。
ステップ 6.5
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 7
複素平面上の点の角は、複素部分の実部分に対する逆正切です。
ステップ 8
の値を代入します。