問題を入力...
微分積分学準備 例
ステップ 1
ステップ 1.1
分数を因数分解します。
ステップ 1.1.1
をで因数分解します。
ステップ 1.1.1.1
をで因数分解します。
ステップ 1.1.1.2
をで因数分解します。
ステップ 1.1.1.3
をで因数分解します。
ステップ 1.1.2
各群から最大公約数を因数分解します。
ステップ 1.1.2.1
前の2項と後ろの2項をまとめます。
ステップ 1.1.2.2
各群から最大公約数を因数分解します。
ステップ 1.1.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 1.1.4
をに書き換えます。
ステップ 1.1.5
因数分解。
ステップ 1.1.5.1
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 1.1.5.2
不要な括弧を削除します。
ステップ 1.1.6
指数をまとめます。
ステップ 1.1.6.1
を乗します。
ステップ 1.1.6.2
を乗します。
ステップ 1.1.6.3
べき乗則を利用して指数を組み合わせます。
ステップ 1.1.6.4
とをたし算します。
ステップ 1.1.7
今日数因数で約分することで式を約分します。
ステップ 1.1.7.1
共通因数を約分します。
ステップ 1.1.7.2
式を書き換えます。
ステップ 1.2
分母の各因数に対して、その因数を分母として、未知の値を分子として利用し、新たな分数を作成します。分母の因数は線形なので、その場所には1個の変数を置きます。
ステップ 1.3
分母の各因数に対して、その因数を分母として、未知の値を分子として利用し、新たな分数を作成します。分母の因数は線形なので、その場所には1個の変数を置きます。
ステップ 1.4
方程式の各分数に元の式の分母を掛けます。この場合、分母はです。
ステップ 1.5
の共通因数を約分します。
ステップ 1.5.1
共通因数を約分します。
ステップ 1.5.2
をで割ります。
ステップ 1.6
各項を簡約します。
ステップ 1.6.1
の共通因数を約分します。
ステップ 1.6.1.1
共通因数を約分します。
ステップ 1.6.1.2
をで割ります。
ステップ 1.6.2
との共通因数を約分します。
ステップ 1.6.2.1
をで因数分解します。
ステップ 1.6.2.2
共通因数を約分します。
ステップ 1.6.2.2.1
を掛けます。
ステップ 1.6.2.2.2
共通因数を約分します。
ステップ 1.6.2.2.3
式を書き換えます。
ステップ 1.6.2.2.4
をで割ります。
ステップ 1.6.3
分配則を当てはめます。
ステップ 1.6.4
をの左に移動させます。
ステップ 1.7
とを並べ替えます。
ステップ 2
ステップ 2.1
式の両辺からの係数を等しくし、部分分数の変数の方程式を作成します。方程式を等しくするために、方程式の両辺の等価係数は等しくなければなりません。
ステップ 2.2
式の両辺からを含まない項の係数を等しくし、部分分数の変数の方程式を作成します。方程式を等しくするために、方程式の両辺の等価係数は等しくなければなりません。
ステップ 2.3
連立方程式を立て、部分分数の係数を求めます。
ステップ 3
ステップ 3.1
方程式をとして書き換えます。
ステップ 3.2
各方程式ののすべての発生をで置き換えます。
ステップ 3.2.1
ののすべての発生をで置き換えます。
ステップ 3.2.2
右辺を簡約します。
ステップ 3.2.2.1
を簡約します。
ステップ 3.2.2.1.1
にをかけます。
ステップ 3.2.2.1.2
とをたし算します。
ステップ 3.3
方程式をとして書き換えます。
ステップ 3.4
連立方程式を解きます。
ステップ 3.5
すべての解をまとめます。
ステップ 4
の各部分分数の係数をとで求めた値で置き換えます。