微分積分学準備 例

対称軸を求める p(x)=(x+4)^2-2
ステップ 1
を方程式で書きます。
ステップ 2
頂点形、、を利用しての値を求めます。
ステップ 3
の値が正なので、放物線は上に開です。
上に開く
ステップ 4
頂点を求めます。
ステップ 5
頂点から焦点までの距離を求めます。
タップして手順をさらに表示してください…
ステップ 5.1
次の式を利用して放物線の交点から焦点までの距離を求めます。
ステップ 5.2
の値を公式に代入します。
ステップ 5.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.3.1
共通因数を約分します。
ステップ 5.3.2
式を書き換えます。
ステップ 6
焦点を求めます。
タップして手順をさらに表示してください…
ステップ 6.1
放物線の焦点は、放物線が上下に開の場合、をy座標に加えて求められます。
ステップ 6.2
、およびの既知数を公式に代入し、簡約します。
ステップ 7
交点と焦点を通る線を求め、対称軸を求めます。
ステップ 8