問題を入力...
微分積分学準備 例
,
ステップ 1
正切関数は第二象限と第四象限で負です。余弦関数は第一象限と第四象限で正です。の解の集合は、両集合で求めた唯一の象限なので、第四象限に制限されます。
解は第四象限にあります。
ステップ 2
余弦の定義を利用して単位円直角三角形の既知の辺を求めます。象限は、それぞれの値の符号を決定します。
ステップ 3
単位円の三角形の対辺を求めます。隣接辺と斜辺が分かっているので、ピタゴラスの定理を利用して残りの辺を求めます。
ステップ 4
方程式の既知数を置き換えます。
ステップ 5
ステップ 5.1
を否定します。
対辺
ステップ 5.2
を乗します。
対辺
ステップ 5.3
を乗します。
対辺
ステップ 5.4
にをかけます。
対辺
ステップ 5.5
からを引きます。
対辺
対辺
ステップ 6
ステップ 6.1
正弦の定義を利用しての値を求めます。
ステップ 6.2
既知数に代入します。
ステップ 6.3
分数の前に負数を移動させます。
ステップ 7
ステップ 7.1
正接の定義を利用しての値を求めます。
ステップ 7.2
既知数に代入します。
ステップ 7.3
分数の前に負数を移動させます。
ステップ 8
ステップ 8.1
余接の定義を利用しての値を求めます。
ステップ 8.2
既知数に代入します。
ステップ 8.3
の値を簡約します。
ステップ 8.3.1
分数の前に負数を移動させます。
ステップ 8.3.2
にをかけます。
ステップ 8.3.3
分母を組み合わせて簡約します。
ステップ 8.3.3.1
にをかけます。
ステップ 8.3.3.2
を乗します。
ステップ 8.3.3.3
を乗します。
ステップ 8.3.3.4
べき乗則を利用して指数を組み合わせます。
ステップ 8.3.3.5
とをたし算します。
ステップ 8.3.3.6
をに書き換えます。
ステップ 8.3.3.6.1
を利用し、をに書き換えます。
ステップ 8.3.3.6.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 8.3.3.6.3
とをまとめます。
ステップ 8.3.3.6.4
の共通因数を約分します。
ステップ 8.3.3.6.4.1
共通因数を約分します。
ステップ 8.3.3.6.4.2
式を書き換えます。
ステップ 8.3.3.6.5
指数を求めます。
ステップ 9
ステップ 9.1
正割の定義を利用しての値を求めます。
ステップ 9.2
既知数に代入します。
ステップ 10
ステップ 10.1
余割の定義を利用しての値を求めます。
ステップ 10.2
既知数に代入します。
ステップ 10.3
の値を簡約します。
ステップ 10.3.1
分数の前に負数を移動させます。
ステップ 10.3.2
にをかけます。
ステップ 10.3.3
分母を組み合わせて簡約します。
ステップ 10.3.3.1
にをかけます。
ステップ 10.3.3.2
を乗します。
ステップ 10.3.3.3
を乗します。
ステップ 10.3.3.4
べき乗則を利用して指数を組み合わせます。
ステップ 10.3.3.5
とをたし算します。
ステップ 10.3.3.6
をに書き換えます。
ステップ 10.3.3.6.1
を利用し、をに書き換えます。
ステップ 10.3.3.6.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 10.3.3.6.3
とをまとめます。
ステップ 10.3.3.6.4
の共通因数を約分します。
ステップ 10.3.3.6.4.1
共通因数を約分します。
ステップ 10.3.3.6.4.2
式を書き換えます。
ステップ 10.3.3.6.5
指数を求めます。
ステップ 11
各三角関数の値の解です。