微分積分学準備 例

Найти остальные тригонометрические значения в квадранте I cot(theta)=8/6
ステップ 1
余接の定義を利用して単位円直角三角形の既知の辺を求めます。象限は、それぞれの値の符号を決定します。
ステップ 2
単位円の三角形の斜辺を求めます。対辺と隣接辺が分かっているので、ピタゴラスの定理を利用して残りの辺を求めます。
ステップ 3
方程式の既知数を置き換えます。
ステップ 4
根の内側を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1
乗します。
斜辺
ステップ 4.2
乗します。
斜辺
ステップ 4.3
をたし算します。
斜辺
ステップ 4.4
に書き換えます。
斜辺
ステップ 4.5
正の実数と仮定して、累乗根の下から項を取り出します。
斜辺
斜辺
ステップ 5
正弦の値を求めます。
タップして手順をさらに表示してください…
ステップ 5.1
正弦の定義を利用しての値を求めます。
ステップ 5.2
既知数に代入します。
ステップ 5.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.3.1
で因数分解します。
ステップ 5.3.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.3.2.1
で因数分解します。
ステップ 5.3.2.2
共通因数を約分します。
ステップ 5.3.2.3
式を書き換えます。
ステップ 6
余弦の値を求めます。
タップして手順をさらに表示してください…
ステップ 6.1
余弦の定義を利用しての値を求めます。
ステップ 6.2
既知数に代入します。
ステップ 6.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 6.3.1
で因数分解します。
ステップ 6.3.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 6.3.2.1
で因数分解します。
ステップ 6.3.2.2
共通因数を約分します。
ステップ 6.3.2.3
式を書き換えます。
ステップ 7
正切の値を求めます。
タップして手順をさらに表示してください…
ステップ 7.1
正接の定義を利用しての値を求めます。
ステップ 7.2
既知数に代入します。
ステップ 7.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 7.3.1
で因数分解します。
ステップ 7.3.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 7.3.2.1
で因数分解します。
ステップ 7.3.2.2
共通因数を約分します。
ステップ 7.3.2.3
式を書き換えます。
ステップ 8
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 8.1
で因数分解します。
ステップ 8.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 8.2.1
で因数分解します。
ステップ 8.2.2
共通因数を約分します。
ステップ 8.2.3
式を書き換えます。
ステップ 9
正割の値を求めます。
タップして手順をさらに表示してください…
ステップ 9.1
正割の定義を利用しての値を求めます。
ステップ 9.2
既知数に代入します。
ステップ 9.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 9.3.1
で因数分解します。
ステップ 9.3.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 9.3.2.1
で因数分解します。
ステップ 9.3.2.2
共通因数を約分します。
ステップ 9.3.2.3
式を書き換えます。
ステップ 10
余割の値を求めます。
タップして手順をさらに表示してください…
ステップ 10.1
余割の定義を利用しての値を求めます。
ステップ 10.2
既知数に代入します。
ステップ 10.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 10.3.1
で因数分解します。
ステップ 10.3.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 10.3.2.1
で因数分解します。
ステップ 10.3.2.2
共通因数を約分します。
ステップ 10.3.2.3
式を書き換えます。
ステップ 11
各三角関数の値の解です。