微分積分学準備 例

定義域と値域を求める -1/3x=(y-2)^2
ステップ 1
方程式をとして書き換えます。
ステップ 2
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 3
をまとめます。
ステップ 4
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 4.2
方程式の両辺にを足します。
ステップ 4.3
次に、の負の値を利用し。2番目の解を求めます。
ステップ 4.4
方程式の両辺にを足します。
ステップ 4.5
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 5
の被開数を以上として、式が定義である場所を求めます。
ステップ 6
について解きます。
タップして手順をさらに表示してください…
ステップ 6.1
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 6.1.1
の各項をで割ります。不等式の両辺を負の値でかけ算またはわり算するとき、不等号の向きを逆にします。
ステップ 6.1.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.1.2.1
2つの負の値を割ると正の値になります。
ステップ 6.1.2.2
で割ります。
ステップ 6.1.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.1.3.1
で割ります。
ステップ 6.2
両辺にを掛けます。
ステップ 6.3
簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.1
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.1.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 6.3.1.1.1
共通因数を約分します。
ステップ 6.3.1.1.2
式を書き換えます。
ステップ 6.3.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.3.2.1
をかけます。
ステップ 7
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法:
ステップ 8
値域はすべての有効な値の集合です。グラフを利用して値域を求めます。
区間記号:
集合の内包的記法:
ステップ 9
定義域と値域を判定します。
定義域:
値域:
ステップ 10