問題を入力...
微分積分学準備 例
ステップ 1
方程式の各項を簡約し、右辺をに等しくします。楕円または双曲線の標準形は、方程式の右辺がに等しいことが必要です。
ステップ 2
双曲線の形です。この形を利用して、双曲線の漸近線を求めるために使用する値を決定します。
ステップ 3
この双曲線の中の値を標準形の値と一致させます。変数は原点からのx補正値を、は原点からのy補正値を表します。
ステップ 4
この双曲線は左右に開なので、漸近線はの形に従います。
ステップ 5
ステップ 5.1
括弧を削除します。
ステップ 5.2
を簡約します。
ステップ 5.2.1
各項を簡約します。
ステップ 5.2.1.1
にをかけます。
ステップ 5.2.1.2
分配則を当てはめます。
ステップ 5.2.1.3
とをまとめます。
ステップ 5.2.1.4
の共通因数を約分します。
ステップ 5.2.1.4.1
をで因数分解します。
ステップ 5.2.1.4.2
共通因数を約分します。
ステップ 5.2.1.4.3
式を書き換えます。
ステップ 5.2.2
とをたし算します。
ステップ 6
ステップ 6.1
括弧を削除します。
ステップ 6.2
を簡約します。
ステップ 6.2.1
各項を簡約します。
ステップ 6.2.1.1
にをかけます。
ステップ 6.2.1.2
分配則を当てはめます。
ステップ 6.2.1.3
とをまとめます。
ステップ 6.2.1.4
の共通因数を約分します。
ステップ 6.2.1.4.1
の先頭の負を分子に移動させます。
ステップ 6.2.1.4.2
をで因数分解します。
ステップ 6.2.1.4.3
共通因数を約分します。
ステップ 6.2.1.4.4
式を書き換えます。
ステップ 6.2.1.5
にをかけます。
ステップ 6.2.2
とをたし算します。
ステップ 7
この双曲線には2本の漸近線があります。
ステップ 8
漸近線はとです。
漸近線:
ステップ 9