微分積分学準備 例

Решить относительно t 380=-21cos((2pi)/29.5t)+384
ステップ 1
方程式をとして書き換えます。
ステップ 2
を含まないすべての項を方程式の右辺に移動させます。
タップして手順をさらに表示してください…
ステップ 2.1
方程式の両辺からを引きます。
ステップ 2.2
からを引きます。
ステップ 3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
の各項をで割ります。
ステップ 3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
共通因数を約分します。
ステップ 3.2.1.2
で割ります。
ステップ 3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.1
2つの負の値を割ると正の値になります。
ステップ 4
方程式の両辺の逆余弦をとり、余弦の中からを取り出します。
ステップ 5
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 5.1.1
を概算で置き換えます。
ステップ 5.1.2
をかけます。
ステップ 5.1.3
で割ります。
ステップ 6
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.1
の値を求めます。
ステップ 7
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 7.1
の各項をで割ります。
ステップ 7.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 7.2.1.1
共通因数を約分します。
ステップ 7.2.1.2
で割ります。
ステップ 7.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 7.3.1
で割ります。
ステップ 8
余弦関数は、第一象限と第四象限で正となります。2番目の解を求めるには、から参照角を引き、第四象限で解を求めます。
ステップ 9
について解きます。
タップして手順をさらに表示してください…
ステップ 9.1
簡約します。
タップして手順をさらに表示してください…
ステップ 9.1.1
をかけます。
ステップ 9.1.2
からを引きます。
ステップ 9.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 9.2.1
の各項をで割ります。
ステップ 9.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 9.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 9.2.2.1.1
共通因数を約分します。
ステップ 9.2.2.1.2
で割ります。
ステップ 9.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 9.2.3.1
で割ります。
ステップ 10
の周期を求めます。
タップして手順をさらに表示してください…
ステップ 10.1
関数の期間はを利用して求めることができます。
ステップ 10.2
周期の公式ので置き換えます。
ステップ 10.3
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 10.4
を概算で置き換えます。
ステップ 10.5
をかけます。
ステップ 10.6
で割ります。
ステップ 11
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数