問題を入力...
微分積分学準備 例
ステップ 1
を方程式で書きます。
ステップ 2
ステップ 2.1
x切片を求めるために、をに代入しを解きます。
ステップ 2.2
方程式を解きます。
ステップ 2.2.1
方程式をとして書き換えます。
ステップ 2.2.2
方程式の左辺を因数分解します。
ステップ 2.2.2.1
各群から最大公約数を因数分解します。
ステップ 2.2.2.1.1
前の2項と後ろの2項をまとめます。
ステップ 2.2.2.1.2
各群から最大公約数を因数分解します。
ステップ 2.2.2.2
最大公約数を因数分解して、多項式を因数分解します。
ステップ 2.2.2.3
をに書き換えます。
ステップ 2.2.2.4
因数分解。
ステップ 2.2.2.4.1
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 2.2.2.4.2
不要な括弧を削除します。
ステップ 2.2.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.2.4
をに等しくし、を解きます。
ステップ 2.2.4.1
がに等しいとします。
ステップ 2.2.4.2
方程式の両辺にを足します。
ステップ 2.2.5
をに等しくし、を解きます。
ステップ 2.2.5.1
がに等しいとします。
ステップ 2.2.5.2
方程式の両辺からを引きます。
ステップ 2.2.6
をに等しくし、を解きます。
ステップ 2.2.6.1
がに等しいとします。
ステップ 2.2.6.2
方程式の両辺にを足します。
ステップ 2.2.7
最終解はを真にするすべての値です。
ステップ 2.3
点形式のx切片です。
x切片:
x切片:
ステップ 3
ステップ 3.1
y切片を求めるために、をに代入しを解きます。
ステップ 3.2
方程式を解きます。
ステップ 3.2.1
括弧を削除します。
ステップ 3.2.2
括弧を削除します。
ステップ 3.2.3
括弧を削除します。
ステップ 3.2.4
を簡約します。
ステップ 3.2.4.1
各項を簡約します。
ステップ 3.2.4.1.1
を正数乗し、を得ます。
ステップ 3.2.4.1.2
を正数乗し、を得ます。
ステップ 3.2.4.1.3
にをかけます。
ステップ 3.2.4.1.4
にをかけます。
ステップ 3.2.4.2
数を加えて簡約します。
ステップ 3.2.4.2.1
とをたし算します。
ステップ 3.2.4.2.2
とをたし算します。
ステップ 3.2.4.2.3
とをたし算します。
ステップ 3.3
点形式のy切片です。
y切片:
y切片:
ステップ 4
交点を一覧にします。
x切片:
y切片:
ステップ 5