問題を入力...
微分積分学準備 例
ステップ 1
がに等しいとします。
ステップ 2
ステップ 2.1
をで因数分解します。
ステップ 2.1.1
をで因数分解します。
ステップ 2.1.2
をで因数分解します。
ステップ 2.1.3
をで因数分解します。
ステップ 2.1.4
をで因数分解します。
ステップ 2.1.5
をで因数分解します。
ステップ 2.2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.3
をに等しくし、を解きます。
ステップ 2.3.1
がに等しいとします。
ステップ 2.3.2
についてを解きます。
ステップ 2.3.2.1
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 2.3.2.2
を簡約します。
ステップ 2.3.2.2.1
をに書き換えます。
ステップ 2.3.2.2.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 2.3.2.2.3
プラスマイナスはです。
ステップ 2.4
をに等しくし、を解きます。
ステップ 2.4.1
がに等しいとします。
ステップ 2.4.2
についてを解きます。
ステップ 2.4.2.1
二次方程式の解の公式を利用して解を求めます。
ステップ 2.4.2.2
、、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 2.4.2.3
簡約します。
ステップ 2.4.2.3.1
分子を簡約します。
ステップ 2.4.2.3.1.1
を乗します。
ステップ 2.4.2.3.1.2
を掛けます。
ステップ 2.4.2.3.1.2.1
にをかけます。
ステップ 2.4.2.3.1.2.2
にをかけます。
ステップ 2.4.2.3.1.3
とをたし算します。
ステップ 2.4.2.3.1.4
をに書き換えます。
ステップ 2.4.2.3.1.4.1
をで因数分解します。
ステップ 2.4.2.3.1.4.2
をに書き換えます。
ステップ 2.4.2.3.1.5
累乗根の下から項を取り出します。
ステップ 2.4.2.3.2
にをかけます。
ステップ 2.4.2.3.3
を簡約します。
ステップ 2.4.2.4
最終的な答えは両方の解の組み合わせです。
ステップ 2.5
最終解はを真にするすべての値です。
ステップ 3
結果は複数の形で表すことができます。
完全形:
10進法形式:
ステップ 4