微分積分学準備 例

標準形で表現する x^2+2xy+y^2-8x+8y=0
ステップ 1
について解きます。
タップして手順をさらに表示してください…
ステップ 1.1
二次方程式の解の公式を利用して解を求めます。
ステップ 1.2
、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 1.3
簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1.1
分配則を当てはめます。
ステップ 1.3.1.2
をかけます。
ステップ 1.3.1.3
をかけます。
ステップ 1.3.1.4
括弧を付けます。
ステップ 1.3.1.5
とします。に代入します。
タップして手順をさらに表示してください…
ステップ 1.3.1.5.1
に書き換えます。
ステップ 1.3.1.5.2
分配法則(FOIL法)を使ってを展開します。
タップして手順をさらに表示してください…
ステップ 1.3.1.5.2.1
分配則を当てはめます。
ステップ 1.3.1.5.2.2
分配則を当てはめます。
ステップ 1.3.1.5.2.3
分配則を当てはめます。
ステップ 1.3.1.5.3
簡約し、同類項をまとめます。
タップして手順をさらに表示してください…
ステップ 1.3.1.5.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1.5.3.1.1
積の可換性を利用して書き換えます。
ステップ 1.3.1.5.3.1.2
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 1.3.1.5.3.1.2.1
を移動させます。
ステップ 1.3.1.5.3.1.2.2
をかけます。
ステップ 1.3.1.5.3.1.3
をかけます。
ステップ 1.3.1.5.3.1.4
をかけます。
ステップ 1.3.1.5.3.1.5
をかけます。
ステップ 1.3.1.5.3.1.6
をかけます。
ステップ 1.3.1.5.3.2
をたし算します。
ステップ 1.3.1.6
で因数分解します。
タップして手順をさらに表示してください…
ステップ 1.3.1.6.1
で因数分解します。
ステップ 1.3.1.6.2
で因数分解します。
ステップ 1.3.1.6.3
で因数分解します。
ステップ 1.3.1.6.4
で因数分解します。
ステップ 1.3.1.6.5
で因数分解します。
ステップ 1.3.1.6.6
で因数分解します。
ステップ 1.3.1.6.7
で因数分解します。
ステップ 1.3.1.7
のすべての発生をで置き換えます。
ステップ 1.3.1.8
簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1.8.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.3.1.8.1.1
をかけます。
ステップ 1.3.1.8.1.2
分配則を当てはめます。
ステップ 1.3.1.8.1.3
をかけます。
ステップ 1.3.1.8.2
の反対側の項を組み合わせます。
タップして手順をさらに表示してください…
ステップ 1.3.1.8.2.1
からを引きます。
ステップ 1.3.1.8.2.2
をたし算します。
ステップ 1.3.1.8.3
をたし算します。
ステップ 1.3.1.9
で因数分解します。
タップして手順をさらに表示してください…
ステップ 1.3.1.9.1
で因数分解します。
ステップ 1.3.1.9.2
で因数分解します。
ステップ 1.3.1.9.3
で因数分解します。
ステップ 1.3.1.10
をかけます。
ステップ 1.3.1.11
に書き換えます。
タップして手順をさらに表示してください…
ステップ 1.3.1.11.1
に書き換えます。
ステップ 1.3.1.11.2
に書き換えます。
ステップ 1.3.1.12
累乗根の下から項を取り出します。
ステップ 1.3.1.13
1のすべての数の累乗は1です。
ステップ 1.3.2
をかけます。
ステップ 1.4
式を簡約し、部の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.4.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.4.1.1
分配則を当てはめます。
ステップ 1.4.1.2
をかけます。
ステップ 1.4.1.3
をかけます。
ステップ 1.4.1.4
括弧を付けます。
ステップ 1.4.1.5
とします。に代入します。
タップして手順をさらに表示してください…
ステップ 1.4.1.5.1
に書き換えます。
ステップ 1.4.1.5.2
分配法則(FOIL法)を使ってを展開します。
タップして手順をさらに表示してください…
ステップ 1.4.1.5.2.1
分配則を当てはめます。
ステップ 1.4.1.5.2.2
分配則を当てはめます。
ステップ 1.4.1.5.2.3
分配則を当てはめます。
ステップ 1.4.1.5.3
簡約し、同類項をまとめます。
タップして手順をさらに表示してください…
ステップ 1.4.1.5.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.4.1.5.3.1.1
積の可換性を利用して書き換えます。
ステップ 1.4.1.5.3.1.2
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 1.4.1.5.3.1.2.1
を移動させます。
ステップ 1.4.1.5.3.1.2.2
をかけます。
ステップ 1.4.1.5.3.1.3
をかけます。
ステップ 1.4.1.5.3.1.4
をかけます。
ステップ 1.4.1.5.3.1.5
をかけます。
ステップ 1.4.1.5.3.1.6
をかけます。
ステップ 1.4.1.5.3.2
をたし算します。
ステップ 1.4.1.6
で因数分解します。
タップして手順をさらに表示してください…
ステップ 1.4.1.6.1
で因数分解します。
ステップ 1.4.1.6.2
で因数分解します。
ステップ 1.4.1.6.3
で因数分解します。
ステップ 1.4.1.6.4
で因数分解します。
ステップ 1.4.1.6.5
で因数分解します。
ステップ 1.4.1.6.6
で因数分解します。
ステップ 1.4.1.6.7
で因数分解します。
ステップ 1.4.1.7
のすべての発生をで置き換えます。
ステップ 1.4.1.8
簡約します。
タップして手順をさらに表示してください…
ステップ 1.4.1.8.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.4.1.8.1.1
をかけます。
ステップ 1.4.1.8.1.2
分配則を当てはめます。
ステップ 1.4.1.8.1.3
をかけます。
ステップ 1.4.1.8.2
の反対側の項を組み合わせます。
タップして手順をさらに表示してください…
ステップ 1.4.1.8.2.1
からを引きます。
ステップ 1.4.1.8.2.2
をたし算します。
ステップ 1.4.1.8.3
をたし算します。
ステップ 1.4.1.9
で因数分解します。
タップして手順をさらに表示してください…
ステップ 1.4.1.9.1
で因数分解します。
ステップ 1.4.1.9.2
で因数分解します。
ステップ 1.4.1.9.3
で因数分解します。
ステップ 1.4.1.10
をかけます。
ステップ 1.4.1.11
に書き換えます。
タップして手順をさらに表示してください…
ステップ 1.4.1.11.1
に書き換えます。
ステップ 1.4.1.11.2
に書き換えます。
ステップ 1.4.1.12
累乗根の下から項を取り出します。
ステップ 1.4.1.13
1のすべての数の累乗は1です。
ステップ 1.4.2
をかけます。
ステップ 1.4.3
に変更します。
ステップ 1.4.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.4.4.1
で因数分解します。
ステップ 1.4.4.2
で因数分解します。
ステップ 1.4.4.3
で因数分解します。
ステップ 1.4.4.4
で因数分解します。
ステップ 1.4.4.5
で因数分解します。
ステップ 1.4.4.6
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.4.4.6.1
で因数分解します。
ステップ 1.4.4.6.2
共通因数を約分します。
ステップ 1.4.4.6.3
式を書き換えます。
ステップ 1.4.4.6.4
で割ります。
ステップ 1.5
式を簡約し、部の値を求めます。
タップして手順をさらに表示してください…
ステップ 1.5.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 1.5.1.1
分配則を当てはめます。
ステップ 1.5.1.2
をかけます。
ステップ 1.5.1.3
をかけます。
ステップ 1.5.1.4
括弧を付けます。
ステップ 1.5.1.5
とします。に代入します。
タップして手順をさらに表示してください…
ステップ 1.5.1.5.1
に書き換えます。
ステップ 1.5.1.5.2
分配法則(FOIL法)を使ってを展開します。
タップして手順をさらに表示してください…
ステップ 1.5.1.5.2.1
分配則を当てはめます。
ステップ 1.5.1.5.2.2
分配則を当てはめます。
ステップ 1.5.1.5.2.3
分配則を当てはめます。
ステップ 1.5.1.5.3
簡約し、同類項をまとめます。
タップして手順をさらに表示してください…
ステップ 1.5.1.5.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.5.1.5.3.1.1
積の可換性を利用して書き換えます。
ステップ 1.5.1.5.3.1.2
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 1.5.1.5.3.1.2.1
を移動させます。
ステップ 1.5.1.5.3.1.2.2
をかけます。
ステップ 1.5.1.5.3.1.3
をかけます。
ステップ 1.5.1.5.3.1.4
をかけます。
ステップ 1.5.1.5.3.1.5
をかけます。
ステップ 1.5.1.5.3.1.6
をかけます。
ステップ 1.5.1.5.3.2
をたし算します。
ステップ 1.5.1.6
で因数分解します。
タップして手順をさらに表示してください…
ステップ 1.5.1.6.1
で因数分解します。
ステップ 1.5.1.6.2
で因数分解します。
ステップ 1.5.1.6.3
で因数分解します。
ステップ 1.5.1.6.4
で因数分解します。
ステップ 1.5.1.6.5
で因数分解します。
ステップ 1.5.1.6.6
で因数分解します。
ステップ 1.5.1.6.7
で因数分解します。
ステップ 1.5.1.7
のすべての発生をで置き換えます。
ステップ 1.5.1.8
簡約します。
タップして手順をさらに表示してください…
ステップ 1.5.1.8.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.5.1.8.1.1
をかけます。
ステップ 1.5.1.8.1.2
分配則を当てはめます。
ステップ 1.5.1.8.1.3
をかけます。
ステップ 1.5.1.8.2
の反対側の項を組み合わせます。
タップして手順をさらに表示してください…
ステップ 1.5.1.8.2.1
からを引きます。
ステップ 1.5.1.8.2.2
をたし算します。
ステップ 1.5.1.8.3
をたし算します。
ステップ 1.5.1.9
で因数分解します。
タップして手順をさらに表示してください…
ステップ 1.5.1.9.1
で因数分解します。
ステップ 1.5.1.9.2
で因数分解します。
ステップ 1.5.1.9.3
で因数分解します。
ステップ 1.5.1.10
をかけます。
ステップ 1.5.1.11
に書き換えます。
タップして手順をさらに表示してください…
ステップ 1.5.1.11.1
に書き換えます。
ステップ 1.5.1.11.2
に書き換えます。
ステップ 1.5.1.12
累乗根の下から項を取り出します。
ステップ 1.5.1.13
1のすべての数の累乗は1です。
ステップ 1.5.2
をかけます。
ステップ 1.5.3
に変更します。
ステップ 1.5.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.5.4.1
で因数分解します。
ステップ 1.5.4.2
で因数分解します。
ステップ 1.5.4.3
で因数分解します。
ステップ 1.5.4.4
で因数分解します。
ステップ 1.5.4.5
で因数分解します。
ステップ 1.5.4.6
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 1.5.4.6.1
で因数分解します。
ステップ 1.5.4.6.2
共通因数を約分します。
ステップ 1.5.4.6.3
式を書き換えます。
ステップ 1.5.4.6.4
で割ります。
ステップ 1.6
最終的な答えは両方の解の組み合わせです。
ステップ 2
多項式を標準形で書くために、簡約し、項を降順に並べます。
ステップ 3
標準形はです。
ステップ 4