微分積分学準備 例

簡約/要約 x x=xの自然対数
ステップ 1
方程式の両辺からを引きます。
ステップ 2
方程式の両辺にを足します。
ステップ 3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
の各項をで割ります。
ステップ 3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
共通因数を約分します。
ステップ 3.2.1.2
で割ります。
ステップ 3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.3.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.3.1.1
共通因数を約分します。
ステップ 3.3.1.2
式を書き換えます。
ステップ 4
について解くために、対数の性質を利用して方程式を書き換えます。
ステップ 5
対数の定義を利用してを指数表記に書き換えます。が正の実数でならば、と同値です。
ステップ 6
方程式をとして書き換えます。
ステップ 7
結果は複数の形で表すことができます。
完全形:
10進法形式: