微分積分学準備 例

合計を評価する n=0から8(0.5)^nの8までの和
ステップ 1
が第1項、が連続する項の間の比の時、有限等比級数の和は公式を利用して求められます。
ステップ 2
公式に代入し簡約することで、連続する項の比を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
の公式に代入します。
ステップ 2.2
簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.1.1
共通因数を約分します。
ステップ 2.2.1.2
式を書き換えます。
ステップ 2.2.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
で因数分解します。
ステップ 2.2.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.2.2.2.1
を掛けます。
ステップ 2.2.2.2.2
共通因数を約分します。
ステップ 2.2.2.2.3
式を書き換えます。
ステップ 2.2.2.2.4
で割ります。
ステップ 3
下界に代入し簡約することで級数の第1項を求めます。
タップして手順をさらに表示してください…
ステップ 3.1
に代入します。
ステップ 3.2
簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
にべき乗するものはとなります。
ステップ 3.2.2
をかけます。
ステップ 4
比、第1項、および項数の値を和の公式に代入します。
ステップ 5
簡約します。
タップして手順をさらに表示してください…
ステップ 5.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 5.1.1
乗します。
ステップ 5.1.2
をかけます。
ステップ 5.1.3
からを引きます。
ステップ 5.2
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
をかけます。
ステップ 5.2.2
からを引きます。
ステップ 5.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.3.1
で因数分解します。
ステップ 5.3.2
共通因数を約分します。
ステップ 5.3.3
式を書き換えます。
ステップ 5.4
をかけます。