微分積分学準備 例

極限を求める xがx^4+x^3-24)/(x^2-4)の2に近づく(極限
ステップ 1
に近づいたら、極限で極限の法則の和を利用して分解します。
ステップ 2
極限べき乗則を利用して、指数から極限値外側に移動させます。
ステップ 3
極限べき乗則を利用して、指数から極限値外側に移動させます。
ステップ 4
に近づくと定数であるの極限値を求めます。
ステップ 5
すべてのに代入し、極限値を求めます。
タップして手順をさらに表示してください…
ステップ 5.1
に代入し、の極限値を求めます。
ステップ 5.2
に代入し、の極限値を求めます。
ステップ 6
答えを簡約します。
タップして手順をさらに表示してください…
ステップ 6.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 6.1.1
乗します。
ステップ 6.1.2
乗します。
ステップ 6.1.3
をかけます。
ステップ 6.1.4
をたし算します。
ステップ 6.1.5
からを引きます。
ステップ 6.2
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
に書き換えます。
ステップ 6.2.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 6.3
で割ります。