微分積分学準備 例

恒等式を証明する (sin(x))/(cos(x))+(cos(x))/(sin(x))=sec(x)csc(x)
ステップ 1
左辺から始めます。
ステップ 2
分数をたし算します。
タップして手順をさらに表示してください…
ステップ 2.1
を公分母のある分数として書くために、を掛けます。
ステップ 2.2
を公分母のある分数として書くために、を掛けます。
ステップ 2.3
の適した因数を掛けて、各式をを公分母とする式で書きます。
タップして手順をさらに表示してください…
ステップ 2.3.1
をかけます。
ステップ 2.3.2
をかけます。
ステップ 2.3.3
の因数を並べ替えます。
ステップ 2.4
公分母の分子をまとめます。
ステップ 3
各項を簡約します。
ステップ 4
ピタゴラスの定理を当てはめます。
ステップ 5
に書き換えます。
ステップ 6
両辺が等しいことが示されているので、この方程式は恒等式です。
は公式です