微分積分学準備 例

Решить относительно x (2x^2+2x+1)/(x(x+1))>0
ステップ 1
各因数をに等しくして解くことで、式が負から正に切り替わるすべての値を求めます。
ステップ 2
二次方程式の解の公式を利用して解を求めます。
ステップ 3
、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 4
簡約します。
タップして手順をさらに表示してください…
ステップ 4.1
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.1
乗します。
ステップ 4.1.2
を掛けます。
タップして手順をさらに表示してください…
ステップ 4.1.2.1
をかけます。
ステップ 4.1.2.2
をかけます。
ステップ 4.1.3
からを引きます。
ステップ 4.1.4
に書き換えます。
ステップ 4.1.5
に書き換えます。
ステップ 4.1.6
に書き換えます。
ステップ 4.1.7
に書き換えます。
ステップ 4.1.8
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 4.1.9
の左に移動させます。
ステップ 4.2
をかけます。
ステップ 4.3
を簡約します。
ステップ 5
最終的な答えは両方の解の組み合わせです。
ステップ 6
方程式の両辺からを引きます。
ステップ 7
各因数について解き、絶対値式が負から正になる値を求めます。
ステップ 8
解をまとめます。
ステップ 9
の定義域を求めます。
タップして手順をさらに表示してください…
ステップ 9.1
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 9.2
について解きます。
タップして手順をさらに表示してください…
ステップ 9.2.1
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 9.2.2
に等しいとします。
ステップ 9.2.3
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 9.2.3.1
に等しいとします。
ステップ 9.2.3.2
方程式の両辺からを引きます。
ステップ 9.2.4
最終解はを真にするすべての値です。
ステップ 9.3
定義域は式が定義になるのすべての値です。
ステップ 10
各根を利用して検定区間を作成します。
ステップ 11
各区間から試験値を選び、この値を元の不等式に代入して、どの区間が不等式を満たすか判定します。
タップして手順をさらに表示してください…
ステップ 11.1
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 11.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 11.1.2
を元の不等式ので置き換えます。
ステップ 11.1.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
True
True
ステップ 11.2
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 11.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 11.2.2
を元の不等式ので置き換えます。
ステップ 11.2.3
左辺は右辺より大きくありません。つまり、与えられた文は偽です。
False
False
ステップ 11.3
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 11.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 11.3.2
を元の不等式ので置き換えます。
ステップ 11.3.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
True
True
ステップ 11.4
区間を比較して、どちらが元の不等式を満たすか判定します。
ステップ 12
解はすべての真の区間からなります。
または
ステップ 13
結果は複数の形で表すことができます。
不等式形:
区間記号:
ステップ 14