微分積分学準備 例

簡略化 ((x^2-1)/(2x^2-x-1))/((x^2-4)/(2x^2-3x-2))
ステップ 1
分子に分母の逆数を掛けます。
ステップ 2
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
に書き換えます。
ステップ 2.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 3
群による因数分解。
タップして手順をさらに表示してください…
ステップ 3.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
タップして手順をさらに表示してください…
ステップ 3.1.1
で因数分解します。
ステップ 3.1.2
プラスに書き換える
ステップ 3.1.3
分配則を当てはめます。
ステップ 3.1.4
をかけます。
ステップ 3.2
各群から最大公約数を因数分解します。
タップして手順をさらに表示してください…
ステップ 3.2.1
前の2項と後ろの2項をまとめます。
ステップ 3.2.2
各群から最大公約数を因数分解します。
ステップ 3.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1
共通因数を約分します。
ステップ 4.2
式を書き換えます。
ステップ 5
群による因数分解。
タップして手順をさらに表示してください…
ステップ 5.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
タップして手順をさらに表示してください…
ステップ 5.1.1
で因数分解します。
ステップ 5.1.2
プラスに書き換える
ステップ 5.1.3
分配則を当てはめます。
ステップ 5.1.4
をかけます。
ステップ 5.2
各群から最大公約数を因数分解します。
タップして手順をさらに表示してください…
ステップ 5.2.1
前の2項と後ろの2項をまとめます。
ステップ 5.2.2
各群から最大公約数を因数分解します。
ステップ 5.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 6
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 6.1
に書き換えます。
ステップ 6.2
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 7
項を簡約します。
タップして手順をさらに表示してください…
ステップ 7.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 7.1.1
共通因数を約分します。
ステップ 7.1.2
式を書き換えます。
ステップ 7.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 7.2.1
共通因数を約分します。
ステップ 7.2.2
式を書き換えます。
ステップ 7.3
をかけます。