問題を入力...
微分積分学準備 例
ステップ 1
をに書き換えます。
ステップ 2
べき乗則を当てはめて、指数をかけ算します。
ステップ 3
べき乗則を利用して指数を組み合わせます。
ステップ 4
すべての方程式に等しい基数を持つ同等の式を作成します。
ステップ 5
底が同じなので、2つの式は指数も等しい場合に限り等しいです。
ステップ 6
ステップ 6.1
方程式の両辺からを引きます。
ステップ 6.2
方程式の左辺を因数分解します。
ステップ 6.2.1
とします。をに代入します。
ステップ 6.2.2
群による因数分解。
ステップ 6.2.2.1
項を並べ替えます。
ステップ 6.2.2.2
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
ステップ 6.2.2.2.1
をで因数分解します。
ステップ 6.2.2.2.2
をプラスに書き換える
ステップ 6.2.2.2.3
分配則を当てはめます。
ステップ 6.2.2.3
各群から最大公約数を因数分解します。
ステップ 6.2.2.3.1
前の2項と後ろの2項をまとめます。
ステップ 6.2.2.3.2
各群から最大公約数を因数分解します。
ステップ 6.2.2.4
最大公約数を因数分解して、多項式を因数分解します。
ステップ 6.2.3
のすべての発生をで置き換えます。
ステップ 6.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 6.4
をに等しくし、を解きます。
ステップ 6.4.1
がに等しいとします。
ステップ 6.4.2
についてを解きます。
ステップ 6.4.2.1
方程式の両辺にを足します。
ステップ 6.4.2.2
の各項をで割り、簡約します。
ステップ 6.4.2.2.1
の各項をで割ります。
ステップ 6.4.2.2.2
左辺を簡約します。
ステップ 6.4.2.2.2.1
の共通因数を約分します。
ステップ 6.4.2.2.2.1.1
共通因数を約分します。
ステップ 6.4.2.2.2.1.2
をで割ります。
ステップ 6.5
をに等しくし、を解きます。
ステップ 6.5.1
がに等しいとします。
ステップ 6.5.2
方程式の両辺からを引きます。
ステップ 6.6
最終解はを真にするすべての値です。
ステップ 7
結果は複数の形で表すことができます。
完全形:
10進法形式: