問題を入力...
微分積分学準備 例
ステップ 1
ステップ 1.1
方程式の両辺からを引きます。
ステップ 1.2
正弦と余弦に関してを書き換えます。
ステップ 1.3
を公分母のある分数として書くために、を掛けます。
ステップ 1.4
を公分母のある分数として書くために、を掛けます。
ステップ 1.5
の適した因数を掛けて、各式をを公分母とする式で書きます。
ステップ 1.5.1
にをかけます。
ステップ 1.5.2
にをかけます。
ステップ 1.5.3
の因数を並べ替えます。
ステップ 1.6
公分母の分子をまとめます。
ステップ 1.7
からを引きます。
ステップ 2
ステップ 2.1
値のリストの最小公分母を求めることは、それらの値の分母の最小公倍数を求めることと同じです。
ステップ 2.2
1と任意の式の最小公倍数はその式です。
ステップ 3
ステップ 3.1
の各項にを掛けます。
ステップ 3.2
左辺を簡約します。
ステップ 3.2.1
の共通因数を約分します。
ステップ 3.2.1.1
共通因数を約分します。
ステップ 3.2.1.2
式を書き換えます。
ステップ 3.3
右辺を簡約します。
ステップ 3.3.1
両辺を掛けて簡約します。
ステップ 3.3.1.1
分配則を当てはめます。
ステップ 3.3.1.2
並べ替えます。
ステップ 3.3.1.2.1
をの左に移動させます。
ステップ 3.3.1.2.2
積の可換性を利用して書き換えます。
ステップ 3.3.2
指数を足してにを掛けます。
ステップ 3.3.2.1
を移動させます。
ステップ 3.3.2.2
にをかけます。
ステップ 3.3.3
両辺を掛けて簡約します。
ステップ 3.3.3.1
分配則を当てはめます。
ステップ 3.3.3.2
掛け算します。
ステップ 3.3.3.2.1
にをかけます。
ステップ 3.3.3.2.2
にをかけます。
ステップ 4
ステップ 4.1
が方程式の右辺にあるので、両辺を入れ替えると左辺になります。
ステップ 4.2
を含むすべての項を方程式の左辺に移動させます。
ステップ 4.2.1
方程式の両辺にを足します。
ステップ 4.2.2
とをたし算します。
ステップ 4.3
方程式の両辺からを引きます。
ステップ 4.4
二次方程式の解の公式を利用して解を求めます。
ステップ 4.5
、、およびを二次方程式の解の公式に代入し、の値を求めます。
ステップ 4.6
簡約します。
ステップ 4.6.1
分子を簡約します。
ステップ 4.6.1.1
を乗します。
ステップ 4.6.1.2
を掛けます。
ステップ 4.6.1.2.1
にをかけます。
ステップ 4.6.1.2.2
にをかけます。
ステップ 4.6.1.3
とをたし算します。
ステップ 4.6.1.4
をに書き換えます。
ステップ 4.6.1.4.1
をで因数分解します。
ステップ 4.6.1.4.2
をに書き換えます。
ステップ 4.6.1.5
累乗根の下から項を取り出します。
ステップ 4.6.2
にをかけます。
ステップ 4.6.3
を簡約します。
ステップ 4.7
最終的な答えは両方の解の組み合わせです。
ステップ 5
各解を求め、を解きます。
ステップ 6
ステップ 6.1
方程式の両辺の逆正弦をとり、正弦の中からを取り出します。
ステップ 6.2
右辺を簡約します。
ステップ 6.2.1
の値を求めます。
ステップ 6.3
正弦関数は、第一象限と第二象限で正となります。2番目の解を求めるには、から参照角を引き、第二象限で解を求めます。
ステップ 6.4
について解きます。
ステップ 6.4.1
括弧を削除します。
ステップ 6.4.2
括弧を削除します。
ステップ 6.4.3
からを引きます。
ステップ 6.5
の周期を求めます。
ステップ 6.5.1
関数の期間はを利用して求めることができます。
ステップ 6.5.2
周期の公式のをで置き換えます。
ステップ 6.5.3
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 6.5.4
をで割ります。
ステップ 6.6
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
、任意の整数
ステップ 7
ステップ 7.1
方程式の両辺の逆正弦をとり、正弦の中からを取り出します。
ステップ 7.2
右辺を簡約します。
ステップ 7.2.1
の値を求めます。
ステップ 7.3
正弦関数は、第一象限と第二象限で正となります。2番目の解を求めるには、から参照角を引き、第二象限で解を求めます。
ステップ 7.4
について解きます。
ステップ 7.4.1
括弧を削除します。
ステップ 7.4.2
括弧を削除します。
ステップ 7.4.3
とをたし算します。
ステップ 7.5
の周期を求めます。
ステップ 7.5.1
関数の期間はを利用して求めることができます。
ステップ 7.5.2
周期の公式のをで置き換えます。
ステップ 7.5.3
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 7.5.4
をで割ります。
ステップ 7.6
を各負の角に足し、正の角を得ます。
ステップ 7.6.1
をに足し、正の角を求めます。
ステップ 7.6.2
からを引きます。
ステップ 7.6.3
新しい角をリストします。
ステップ 7.7
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
、任意の整数
ステップ 8
すべての解をまとめます。
、任意の整数