微分積分学準備 例

Решить относительно x 8e^(2x)+8e^x=6
ステップ 1
を累乗法として書き換えます。
ステップ 2
に代入します。
ステップ 3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.1
方程式の両辺からを引きます。
ステップ 3.2
方程式の左辺を因数分解します。
タップして手順をさらに表示してください…
ステップ 3.2.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
で因数分解します。
ステップ 3.2.1.2
で因数分解します。
ステップ 3.2.1.3
で因数分解します。
ステップ 3.2.1.4
で因数分解します。
ステップ 3.2.1.5
で因数分解します。
ステップ 3.2.2
因数分解。
タップして手順をさらに表示してください…
ステップ 3.2.2.1
群による因数分解。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.1.1
で因数分解します。
ステップ 3.2.2.1.1.2
プラスに書き換える
ステップ 3.2.2.1.1.3
分配則を当てはめます。
ステップ 3.2.2.1.2
各群から最大公約数を因数分解します。
タップして手順をさらに表示してください…
ステップ 3.2.2.1.2.1
前の2項と後ろの2項をまとめます。
ステップ 3.2.2.1.2.2
各群から最大公約数を因数分解します。
ステップ 3.2.2.1.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 3.2.2.2
不要な括弧を削除します。
ステップ 3.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 3.4
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 3.4.1
に等しいとします。
ステップ 3.4.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 3.4.2.1
方程式の両辺にを足します。
ステップ 3.4.2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.4.2.2.1
の各項をで割ります。
ステップ 3.4.2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.4.2.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.4.2.2.2.1.1
共通因数を約分します。
ステップ 3.4.2.2.2.1.2
で割ります。
ステップ 3.5
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 3.5.1
に等しいとします。
ステップ 3.5.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 3.5.2.1
方程式の両辺からを引きます。
ステップ 3.5.2.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.5.2.2.1
の各項をで割ります。
ステップ 3.5.2.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.5.2.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.5.2.2.2.1.1
共通因数を約分します。
ステップ 3.5.2.2.2.1.2
で割ります。
ステップ 3.5.2.2.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.5.2.2.3.1
分数の前に負数を移動させます。
ステップ 3.6
最終解はを真にするすべての値です。
ステップ 4
の中のに代入します。
ステップ 5
を解きます。
タップして手順をさらに表示してください…
ステップ 5.1
方程式をとして書き換えます。
ステップ 5.2
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 5.3
左辺を展開します。
タップして手順をさらに表示してください…
ステップ 5.3.1
を対数の外に移動させて、を展開します。
ステップ 5.3.2
の自然対数はです。
ステップ 5.3.3
をかけます。
ステップ 6
の中のに代入します。
ステップ 7
を解きます。
タップして手順をさらに表示してください…
ステップ 7.1
方程式をとして書き換えます。
ステップ 7.2
方程式の両辺の自然対数をとり、指数から変数を削除します。
ステップ 7.3
が未定義なので、方程式は解くことができません。
未定義
ステップ 7.4
の解はありません
解がありません
解がありません
ステップ 8
方程式が真になるような解をリストします。
ステップ 9
結果は複数の形で表すことができます。
完全形:
10進法形式: