問題を入力...
微分積分学準備 例
ステップ 1
余弦の定義を利用して単位円直角三角形の既知の辺を求めます。象限は、それぞれの値の符号を決定します。
ステップ 2
単位円の三角形の対辺を求めます。隣接辺と斜辺が分かっているので、ピタゴラスの定理を利用して残りの辺を求めます。
ステップ 3
方程式の既知数を置き換えます。
ステップ 4
ステップ 4.1
を否定します。
対辺
ステップ 4.2
を乗します。
対辺
ステップ 4.3
を乗します。
対辺
ステップ 4.4
にをかけます。
対辺
ステップ 4.5
からを引きます。
対辺
ステップ 4.6
をに書き換えます。
対辺
ステップ 4.7
正の実数と仮定して、累乗根の下から項を取り出します。
対辺
ステップ 4.8
にをかけます。
対辺
対辺
ステップ 5
ステップ 5.1
正弦の定義を利用しての値を求めます。
ステップ 5.2
既知数に代入します。
ステップ 5.3
の値を簡約します。
ステップ 5.3.1
との共通因数を約分します。
ステップ 5.3.1.1
をで因数分解します。
ステップ 5.3.1.2
共通因数を約分します。
ステップ 5.3.1.2.1
をで因数分解します。
ステップ 5.3.1.2.2
共通因数を約分します。
ステップ 5.3.1.2.3
式を書き換えます。
ステップ 5.3.2
分数の前に負数を移動させます。
ステップ 6
ステップ 6.1
をで因数分解します。
ステップ 6.2
共通因数を約分します。
ステップ 6.2.1
をで因数分解します。
ステップ 6.2.2
共通因数を約分します。
ステップ 6.2.3
式を書き換えます。
ステップ 7
ステップ 7.1
正接の定義を利用しての値を求めます。
ステップ 7.2
既知数に代入します。
ステップ 7.3
との共通因数を約分します。
ステップ 7.3.1
をで因数分解します。
ステップ 7.3.2
共通因数を約分します。
ステップ 7.3.2.1
をで因数分解します。
ステップ 7.3.2.2
共通因数を約分します。
ステップ 7.3.2.3
式を書き換えます。
ステップ 8
ステップ 8.1
余接の定義を利用しての値を求めます。
ステップ 8.2
既知数に代入します。
ステップ 8.3
との共通因数を約分します。
ステップ 8.3.1
をで因数分解します。
ステップ 8.3.2
共通因数を約分します。
ステップ 8.3.2.1
をで因数分解します。
ステップ 8.3.2.2
共通因数を約分します。
ステップ 8.3.2.3
式を書き換えます。
ステップ 9
ステップ 9.1
正割の定義を利用しての値を求めます。
ステップ 9.2
既知数に代入します。
ステップ 9.3
の値を簡約します。
ステップ 9.3.1
との共通因数を約分します。
ステップ 9.3.1.1
をで因数分解します。
ステップ 9.3.1.2
共通因数を約分します。
ステップ 9.3.1.2.1
をで因数分解します。
ステップ 9.3.1.2.2
共通因数を約分します。
ステップ 9.3.1.2.3
式を書き換えます。
ステップ 9.3.2
分数の前に負数を移動させます。
ステップ 10
ステップ 10.1
余割の定義を利用しての値を求めます。
ステップ 10.2
既知数に代入します。
ステップ 10.3
の値を簡約します。
ステップ 10.3.1
との共通因数を約分します。
ステップ 10.3.1.1
をで因数分解します。
ステップ 10.3.1.2
共通因数を約分します。
ステップ 10.3.1.2.1
をで因数分解します。
ステップ 10.3.1.2.2
共通因数を約分します。
ステップ 10.3.1.2.3
式を書き換えます。
ステップ 10.3.2
分数の前に負数を移動させます。
ステップ 11
各三角関数の値の解です。