微分積分学準備 例

x切片とy切片を求める (x-2)^2-(y-1)^2=9
ステップ 1
x切片を求めます。
タップして手順をさらに表示してください…
ステップ 1.1
x切片を求めるために、に代入しを解きます。
ステップ 1.2
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 1.2.1
方程式の両辺にを足します。
ステップ 1.2.2
からを引きます。
ステップ 1.2.3
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 1.2.4
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.4.1
乗します。
ステップ 1.2.4.2
をたし算します。
ステップ 1.2.5
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 1.2.5.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 1.2.5.2
方程式の両辺にを足します。
ステップ 1.2.5.3
次に、の負の値を利用し。2番目の解を求めます。
ステップ 1.2.5.4
方程式の両辺にを足します。
ステップ 1.2.5.5
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 1.3
点形式のx切片です。
x切片:
x切片:
ステップ 2
y切片を求めます。
タップして手順をさらに表示してください…
ステップ 2.1
y切片を求めるために、に代入しを解きます。
ステップ 2.2
方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.2.1
方程式の両辺からを引きます。
ステップ 2.2.2
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.2.1.1
からを引きます。
ステップ 2.2.2.1.2
乗します。
ステップ 2.2.2.1.3
をかけます。
ステップ 2.2.2.2
からを引きます。
ステップ 2.2.3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.3.1
の各項をで割ります。
ステップ 2.2.3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.3.2.1
2つの負の値を割ると正の値になります。
ステップ 2.2.3.2.2
で割ります。
ステップ 2.2.3.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.3.3.1
で割ります。
ステップ 2.2.4
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 2.2.5
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.2.5.1
に書き換えます。
ステップ 2.2.5.2
に書き換えます。
ステップ 2.2.5.3
に書き換えます。
ステップ 2.2.6
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 2.2.6.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 2.2.6.2
方程式の両辺にを足します。
ステップ 2.2.6.3
次に、の負の値を利用し。2番目の解を求めます。
ステップ 2.2.6.4
方程式の両辺にを足します。
ステップ 2.2.6.5
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2.3
y切片を求めるために、に代入しを解きます。
y切片:
y切片:
ステップ 3
交点を一覧にします。
x切片:
y切片:
ステップ 4