微分積分学準備 例

因数分解により解く cos(x)^2-cos(x)=12
ステップ 1
方程式の両辺からを引きます。
ステップ 2
とします。に代入します。
ステップ 3
たすき掛けを利用してを因数分解します。
タップして手順をさらに表示してください…
ステップ 3.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 3.2
この整数を利用して因数分解の形を書きます。
ステップ 4
のすべての発生をで置き換えます。
ステップ 5
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 6
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 6.1
に等しいとします。
ステップ 6.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 6.2.1
方程式の両辺にを足します。
ステップ 6.2.2
余弦の値域はです。がこの値域にないので、解はありません。
解がありません
解がありません
解がありません
ステップ 7
最終解はを真にするすべての値です。
解がありません