微分積分学準備 例

因数分解により解く x^6-16^4=0
ステップ 1
に書き換えます。
ステップ 2
に書き換えます。
ステップ 3
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 4
簡約します。
タップして手順をさらに表示してください…
ステップ 4.1
乗します。
ステップ 4.2
乗します。
ステップ 4.3
をかけます。
ステップ 5
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 6
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 6.1
に等しいとします。
ステップ 6.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 6.2.1
方程式の両辺からを引きます。
ステップ 6.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 6.2.3
を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.3.1
に書き換えます。
タップして手順をさらに表示してください…
ステップ 6.2.3.1.1
で因数分解します。
ステップ 6.2.3.1.2
に書き換えます。
ステップ 6.2.3.2
累乗根の下から項を取り出します。
ステップ 7
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 7.1
に等しいとします。
ステップ 7.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 7.2.1
方程式の両辺にを足します。
ステップ 7.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 7.2.3
を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.3.1
に書き換えます。
タップして手順をさらに表示してください…
ステップ 7.2.3.1.1
で因数分解します。
ステップ 7.2.3.1.2
に書き換えます。
ステップ 7.2.3.2
累乗根の下から項を取り出します。
ステップ 8
最終解はを真にするすべての値です。
ステップ 9
結果は複数の形で表すことができます。
完全形:
10進法形式: