微分積分学準備 例

有理根検証を用いて根/ゼロを求める -4x^2+4x-1
ステップ 1
多項式関数が整数係数をもつならば、すべての有理数0はの形をもち、は定数の因数、は首位係数の因数です。
ステップ 2
のすべての組み合わせを求めます。これらは、多項式関数の可能な根です。
ステップ 3
可能な根を多項式にそれぞれ代入し、実際の根を求めます。簡約し、値がか、つまり根であるか確認します。
ステップ 4
式を簡約します。この場合、式はに等しくなり、は多項式の根です。
タップして手順をさらに表示してください…
ステップ 4.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 4.1.1
積の法則をに当てはめます。
ステップ 4.1.2
1のすべての数の累乗は1です。
ステップ 4.1.3
乗します。
ステップ 4.1.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1.4.1
で因数分解します。
ステップ 4.1.4.2
共通因数を約分します。
ステップ 4.1.4.3
式を書き換えます。
ステップ 4.1.5
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 4.1.5.1
で因数分解します。
ステップ 4.1.5.2
共通因数を約分します。
ステップ 4.1.5.3
式を書き換えます。
ステップ 4.2
足し算と引き算で簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
をたし算します。
ステップ 4.2.2
からを引きます。
ステップ 5
は既知の根なので、多項式をで割り、多項式の商を求めます。この多項式は他の根を求めるために利用できます。
ステップ 6
次に、残りの多項式の根を求めます。多項式の次数はで約分しています。
タップして手順をさらに表示してください…
ステップ 6.1
除数と被除数を表す数を除法のような配置にします。
  
ステップ 6.2
被除数の1番目の数を、結果領域の第1位(水平線の下)に置きます。
  
ステップ 6.3
結果の最新の項目に除数を掛け、の結果を被除数の隣の項の下に置きます。
  
ステップ 6.4
かけ算の積とわり算した数をたし、結果行の次の位置に結果を記入します。
  
ステップ 6.5
結果の最新の項目に除数を掛け、の結果を被除数の隣の項の下に置きます。
 
ステップ 6.6
かけ算の積とわり算した数をたし、結果行の次の位置に結果を記入します。
 
ステップ 6.7
最後の数以外のすべての数は、商の多項式の係数になります。結果行の最後の値は余りです。
ステップ 6.8
商の多項式を簡約します。
ステップ 7
で因数分解します。
タップして手順をさらに表示してください…
ステップ 7.1
で因数分解します。
ステップ 7.2
で因数分解します。
ステップ 7.3
で因数分解します。
ステップ 8
方程式の左辺を因数分解します。
タップして手順をさらに表示してください…
ステップ 8.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 8.1.1
で因数分解します。
ステップ 8.1.2
で因数分解します。
ステップ 8.1.3
に書き換えます。
ステップ 8.1.4
で因数分解します。
ステップ 8.1.5
で因数分解します。
ステップ 8.2
完全平方式を利用して因数分解します。
タップして手順をさらに表示してください…
ステップ 8.2.1
に書き換えます。
ステップ 8.2.2
に書き換えます。
ステップ 8.2.3
中間項が、第1項と第3項で2乗される数の積の2倍であることを確認します。
ステップ 8.2.4
多項式を書き換えます。
ステップ 8.2.5
ならば、完全平方3項式を利用して因数分解します。
ステップ 9
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 9.1
の各項をで割ります。
ステップ 9.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 9.2.1
2つの負の値を割ると正の値になります。
ステップ 9.2.2
で割ります。
ステップ 9.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 9.3.1
で割ります。
ステップ 10
に等しいとします。
ステップ 11
について解きます。
タップして手順をさらに表示してください…
ステップ 11.1
方程式の両辺にを足します。
ステップ 11.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 11.2.1
の各項をで割ります。
ステップ 11.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 11.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 11.2.2.1.1
共通因数を約分します。
ステップ 11.2.2.1.2
で割ります。
ステップ 12