微分積分学準備 例

区間表記への変換 x^4>81x^2
ステップ 1
不等式の両辺からを引きます。
ステップ 2
不等式を方程式に変換します。
ステップ 3
方程式の左辺を因数分解します。
タップして手順をさらに表示してください…
ステップ 3.1
で因数分解します。
タップして手順をさらに表示してください…
ステップ 3.1.1
で因数分解します。
ステップ 3.1.2
で因数分解します。
ステップ 3.1.3
で因数分解します。
ステップ 3.2
に書き換えます。
ステップ 3.3
因数分解。
タップして手順をさらに表示してください…
ステップ 3.3.1
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 3.3.2
不要な括弧を削除します。
ステップ 4
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 5
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 5.1
に等しいとします。
ステップ 5.2
についてを解きます。
タップして手順をさらに表示してください…
ステップ 5.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 5.2.2
を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1
に書き換えます。
ステップ 5.2.2.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 5.2.2.3
プラスマイナスです。
ステップ 6
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 6.1
に等しいとします。
ステップ 6.2
方程式の両辺からを引きます。
ステップ 7
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 7.1
に等しいとします。
ステップ 7.2
方程式の両辺にを足します。
ステップ 8
最終解はを真にするすべての値です。
ステップ 9
各根を利用して検定区間を作成します。
ステップ 10
各区間から試験値を選び、この値を元の不等式に代入して、どの区間が不等式を満たすか判定します。
タップして手順をさらに表示してください…
ステップ 10.1
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 10.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 10.1.2
を元の不等式ので置き換えます。
ステップ 10.1.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
True
True
ステップ 10.2
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 10.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 10.2.2
を元の不等式ので置き換えます。
ステップ 10.2.3
左辺は右辺より大きくありません。つまり、与えられた文は偽です。
False
False
ステップ 10.3
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 10.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 10.3.2
を元の不等式ので置き換えます。
ステップ 10.3.3
左辺は右辺より大きくありません。つまり、与えられた文は偽です。
False
False
ステップ 10.4
区間の値を検定し、この値によって不等式が真になるか確認します。
タップして手順をさらに表示してください…
ステップ 10.4.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 10.4.2
を元の不等式ので置き換えます。
ステップ 10.4.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
True
True
ステップ 10.5
区間を比較して、どちらが元の不等式を満たすか判定します。
ステップ 11
解はすべての真の区間からなります。
または
ステップ 12
不等式を区間記号に変換します。
ステップ 13