微分積分学準備 例

逆元を求める g(x)=(x-2)^2
ステップ 1
を方程式で書きます。
ステップ 2
変数を入れ替えます。
ステップ 3
について解きます。
タップして手順をさらに表示してください…
ステップ 3.1
方程式をとして書き換えます。
ステップ 3.2
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 3.3
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 3.3.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 3.3.2
方程式の両辺にを足します。
ステップ 3.3.3
次に、の負の値を利用し。2番目の解を求めます。
ステップ 3.3.4
方程式の両辺にを足します。
ステップ 3.3.5
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4
で置き換え、最終回答を表示します。
ステップ 5
の逆か確認します。
タップして手順をさらに表示してください…
ステップ 5.1
逆の定義域は元の関数の値域です、逆も同じです。定義域との値域、を求め、それらを比較します。
ステップ 5.2
の値域を求めます。
タップして手順をさらに表示してください…
ステップ 5.2.1
値域はすべての有効な値の集合です。グラフを利用して値域を求めます。
区間記号:
ステップ 5.3
の定義域を求めます。
タップして手順をさらに表示してください…
ステップ 5.3.1
の被開数を以上として、式が定義である場所を求めます。
ステップ 5.3.2
定義域は式が定義になるのすべての値です。
ステップ 5.4
の定義域を求めます。
タップして手順をさらに表示してください…
ステップ 5.4.1
式の定義域は、式が未定義の場合を除き、すべての実数です。この場合、式が未定義になるような実数はありません。
ステップ 5.5
の定義域がの範囲で、の範囲がの定義域なので、の逆です。
ステップ 6