問題を入力...
微分積分学準備 例
,
ステップ 1
方程式の両辺にを足します。
ステップ 2
ステップ 2.1
ののすべての発生をで置き換えます。
ステップ 2.2
左辺を簡約します。
ステップ 2.2.1
にをかけます。
ステップ 3
ステップ 3.1
方程式の左辺を因数分解します。
ステップ 3.1.1
とします。をに代入します。
ステップ 3.1.2
をで因数分解します。
ステップ 3.1.2.1
をで因数分解します。
ステップ 3.1.2.2
をで因数分解します。
ステップ 3.1.2.3
をで因数分解します。
ステップ 3.1.2.4
にをかけます。
ステップ 3.1.3
のすべての発生をで置き換えます。
ステップ 3.2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 3.3
がに等しいとします。
ステップ 3.4
をに等しくし、を解きます。
ステップ 3.4.1
がに等しいとします。
ステップ 3.4.2
についてを解きます。
ステップ 3.4.2.1
方程式の両辺からを引きます。
ステップ 3.4.2.2
の各項をで割り、簡約します。
ステップ 3.4.2.2.1
の各項をで割ります。
ステップ 3.4.2.2.2
左辺を簡約します。
ステップ 3.4.2.2.2.1
2つの負の値を割ると正の値になります。
ステップ 3.4.2.2.2.2
をで割ります。
ステップ 3.4.2.2.3
右辺を簡約します。
ステップ 3.4.2.2.3.1
をで割ります。
ステップ 3.5
最終解はを真にするすべての値です。
ステップ 4
ステップ 4.1
ののすべての発生をで置き換えます。
ステップ 4.2
右辺を簡約します。
ステップ 4.2.1
にをかけます。
ステップ 5
ステップ 5.1
ののすべての発生をで置き換えます。
ステップ 5.2
右辺を簡約します。
ステップ 5.2.1
にをかけます。
ステップ 6
式の解は、有効な解である順序対の完全集合です。
ステップ 7
結果は複数の形で表すことができます。
点の形:
方程式の形:
ステップ 8