微分積分学準備 例

代入による解法 625x^2+25y^2=15625 , y=x^2-25
,
ステップ 1
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 1.1
のすべての発生をで置き換えます。
ステップ 1.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1.1.1
に書き換えます。
ステップ 1.2.1.1.2
分配法則(FOIL法)を使ってを展開します。
タップして手順をさらに表示してください…
ステップ 1.2.1.1.2.1
分配則を当てはめます。
ステップ 1.2.1.1.2.2
分配則を当てはめます。
ステップ 1.2.1.1.2.3
分配則を当てはめます。
ステップ 1.2.1.1.3
簡約し、同類項をまとめます。
タップして手順をさらに表示してください…
ステップ 1.2.1.1.3.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1.1.3.1.1
指数を足してを掛けます。
タップして手順をさらに表示してください…
ステップ 1.2.1.1.3.1.1.1
べき乗則を利用して指数を組み合わせます。
ステップ 1.2.1.1.3.1.1.2
をたし算します。
ステップ 1.2.1.1.3.1.2
の左に移動させます。
ステップ 1.2.1.1.3.1.3
をかけます。
ステップ 1.2.1.1.3.2
からを引きます。
ステップ 1.2.1.1.4
分配則を当てはめます。
ステップ 1.2.1.1.5
簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1.1.5.1
をかけます。
ステップ 1.2.1.1.5.2
をかけます。
ステップ 1.2.1.2
からを引きます。
ステップ 2
について解きます。
タップして手順をさらに表示してください…
ステップ 2.1
を方程式に代入します。これにより二次方程式の解の公式を利用しやすくします。
ステップ 2.2
方程式の両辺からを引きます。
ステップ 2.3
の反対側の項を組み合わせます。
タップして手順をさらに表示してください…
ステップ 2.3.1
からを引きます。
ステップ 2.3.2
をたし算します。
ステップ 2.4
で因数分解します。
タップして手順をさらに表示してください…
ステップ 2.4.1
で因数分解します。
ステップ 2.4.2
で因数分解します。
ステップ 2.4.3
で因数分解します。
ステップ 2.5
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.6
に等しいとします。
ステップ 2.7
に等しくし、を解きます。
タップして手順をさらに表示してください…
ステップ 2.7.1
に等しいとします。
ステップ 2.7.2
方程式の両辺にを足します。
ステップ 2.8
最終解はを真にするすべての値です。
ステップ 2.9
の実数を解いた方程式に代入して戻します。
ステップ 2.10
について第1方程式を解きます。
ステップ 2.11
について方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.11.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 2.11.2
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.11.2.1
に書き換えます。
ステップ 2.11.2.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 2.11.2.3
プラスマイナスです。
ステップ 2.12
について二次方程式を解きます。
ステップ 2.13
について方程式を解きます。
タップして手順をさらに表示してください…
ステップ 2.13.1
括弧を削除します。
ステップ 2.13.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 2.13.3
を簡約します。
タップして手順をさらに表示してください…
ステップ 2.13.3.1
に書き換えます。
ステップ 2.13.3.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 2.13.4
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 2.13.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 2.13.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 2.13.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2.14
の解はです。
ステップ 3
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 3.1
のすべての発生をで置き換えます。
ステップ 3.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
を正数乗し、を得ます。
ステップ 3.2.1.2
からを引きます。
ステップ 4
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 4.1
のすべての発生をで置き換えます。
ステップ 4.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1.1
乗します。
ステップ 4.2.1.2
からを引きます。
ステップ 5
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 5.1
のすべての発生をで置き換えます。
ステップ 5.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1.1
を正数乗し、を得ます。
ステップ 5.2.1.2
からを引きます。
ステップ 6
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 6.1
のすべての発生をで置き換えます。
ステップ 6.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 6.2.1.1
乗します。
ステップ 6.2.1.2
からを引きます。
ステップ 7
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 7.1
のすべての発生をで置き換えます。
ステップ 7.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 7.2.1.1
乗します。
ステップ 7.2.1.2
からを引きます。
ステップ 8
式の解は、有効な解である順序対の完全集合です。
ステップ 9
結果は複数の形で表すことができます。
点の形:
方程式の形:
ステップ 10