問題を入力...
微分積分学準備 例
,
ステップ 1
ステップ 1.1
方程式の両辺からを引きます。
ステップ 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 1.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 1.3.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 1.3.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 1.3.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2
ステップ 2.1
各方程式ののすべての発生をで置き換えます。
ステップ 2.1.1
ののすべての発生をで置き換えます。
ステップ 2.1.2
左辺を簡約します。
ステップ 2.1.2.1
を簡約します。
ステップ 2.1.2.1.1
をに書き換えます。
ステップ 2.1.2.1.1.1
を利用し、をに書き換えます。
ステップ 2.1.2.1.1.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.1.2.1.1.3
とをまとめます。
ステップ 2.1.2.1.1.4
の共通因数を約分します。
ステップ 2.1.2.1.1.4.1
共通因数を約分します。
ステップ 2.1.2.1.1.4.2
式を書き換えます。
ステップ 2.1.2.1.1.5
簡約します。
ステップ 2.1.2.1.2
からを引きます。
ステップ 2.2
方程式の各辺をグラフにします。解は交点のx値です。
ステップ 2.3
各方程式ののすべての発生をで置き換えます。
ステップ 2.3.1
ののすべての発生をで置き換えます。
ステップ 2.3.2
右辺を簡約します。
ステップ 2.3.2.1
を簡約します。
ステップ 2.3.2.1.1
を乗します。
ステップ 2.3.2.1.2
にをかけます。
ステップ 2.3.2.1.3
からを引きます。
ステップ 2.3.2.1.4
のいずれの根はです。
ステップ 3
ステップ 3.1
各方程式ののすべての発生をで置き換えます。
ステップ 3.1.1
ののすべての発生をで置き換えます。
ステップ 3.1.2
左辺を簡約します。
ステップ 3.1.2.1
を簡約します。
ステップ 3.1.2.1.1
各項を簡約します。
ステップ 3.1.2.1.1.1
積の法則をに当てはめます。
ステップ 3.1.2.1.1.2
を乗します。
ステップ 3.1.2.1.1.3
にをかけます。
ステップ 3.1.2.1.1.4
をに書き換えます。
ステップ 3.1.2.1.1.4.1
を利用し、をに書き換えます。
ステップ 3.1.2.1.1.4.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 3.1.2.1.1.4.3
とをまとめます。
ステップ 3.1.2.1.1.4.4
の共通因数を約分します。
ステップ 3.1.2.1.1.4.4.1
共通因数を約分します。
ステップ 3.1.2.1.1.4.4.2
式を書き換えます。
ステップ 3.1.2.1.1.4.5
簡約します。
ステップ 3.1.2.1.1.5
にをかけます。
ステップ 3.1.2.1.2
からを引きます。
ステップ 3.2
方程式の各辺をグラフにします。解は交点のx値です。
ステップ 3.3
各方程式ののすべての発生をで置き換えます。
ステップ 3.3.1
ののすべての発生をで置き換えます。
ステップ 3.3.2
右辺を簡約します。
ステップ 3.3.2.1
を簡約します。
ステップ 3.3.2.1.1
指数を足してにを掛けます。
ステップ 3.3.2.1.1.1
にをかけます。
ステップ 3.3.2.1.1.1.1
を乗します。
ステップ 3.3.2.1.1.1.2
べき乗則を利用して指数を組み合わせます。
ステップ 3.3.2.1.1.2
とをたし算します。
ステップ 3.3.2.1.2
を乗します。
ステップ 3.3.2.1.3
からを引きます。
ステップ 3.3.2.1.4
をに書き換えます。
ステップ 3.3.2.1.5
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 3.3.2.1.6
にをかけます。
ステップ 3.4
各方程式ののすべての発生をで置き換えます。
ステップ 3.4.1
ののすべての発生をで置き換えます。
ステップ 3.4.2
右辺を簡約します。
ステップ 3.4.2.1
を簡約します。
ステップ 3.4.2.1.1
を乗します。
ステップ 3.4.2.1.2
にをかけます。
ステップ 3.4.2.1.3
からを引きます。
ステップ 3.4.2.1.4
をに書き換えます。
ステップ 3.4.2.1.5
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 3.4.2.1.6
にをかけます。
ステップ 4
式の解は、有効な解である順序対の完全集合です。
ステップ 5
結果は複数の形で表すことができます。
点の形:
方程式の形:
ステップ 6