微分積分学準備 例

代入による解法 x^2+y^2=25 , y=2x
,
ステップ 1
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 1.1
のすべての発生をで置き換えます。
ステップ 1.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1
を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1.1
各項を簡約します。
タップして手順をさらに表示してください…
ステップ 1.2.1.1.1
積の法則をに当てはめます。
ステップ 1.2.1.1.2
乗します。
ステップ 1.2.1.2
をたし算します。
ステップ 2
について解きます。
タップして手順をさらに表示してください…
ステップ 2.1
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.1
の各項をで割ります。
ステップ 2.1.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 2.1.2.1.1
共通因数を約分します。
ステップ 2.1.2.1.2
で割ります。
ステップ 2.1.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1.3.1
で割ります。
ステップ 2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 2.3
完全解は、解の正と負の部分の両方の計算結果です。
タップして手順をさらに表示してください…
ステップ 2.3.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 2.3.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 2.3.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 3
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 3.1
のすべての発生をで置き換えます。
ステップ 3.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
をかけます。
ステップ 4
各方程式ののすべての発生をで置き換えます。
タップして手順をさらに表示してください…
ステップ 4.1
のすべての発生をで置き換えます。
ステップ 4.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 4.2.1
をかけます。
ステップ 5
式の解は、有効な解である順序対の完全集合です。
ステップ 6
結果は複数の形で表すことができます。
点の形:
方程式の形:
ステップ 7