問題を入力...
微分積分学準備 例
ステップ 1
の被開数を以上として、式が定義である場所を求めます。
ステップ 2
ステップ 2.1
不等式の両辺からを引きます。
ステップ 2.2
の各項をで割り、簡約します。
ステップ 2.2.1
の各項をで割ります。不等式の両辺を負の値でかけ算またはわり算するとき、不等号の向きを逆にします。
ステップ 2.2.2
左辺を簡約します。
ステップ 2.2.2.1
2つの負の値を割ると正の値になります。
ステップ 2.2.2.2
をで割ります。
ステップ 2.2.3
右辺を簡約します。
ステップ 2.2.3.1
をで割ります。
ステップ 3
の分母をに等しいとして、式が未定義である場所を求めます。
ステップ 4
ステップ 4.1
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 4.2
をに等しくし、を解きます。
ステップ 4.2.1
がに等しいとします。
ステップ 4.2.2
方程式の両辺からを引きます。
ステップ 4.3
をに等しくし、を解きます。
ステップ 4.3.1
がに等しいとします。
ステップ 4.3.2
についてを解きます。
ステップ 4.3.2.1
方程式の両辺からを引きます。
ステップ 4.3.2.2
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 4.3.2.3
をに書き換えます。
ステップ 4.3.2.4
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4.3.2.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 4.3.2.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 4.3.2.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 4.4
最終解はを真にするすべての値です。
ステップ 5
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法:
ステップ 6