問題を入力...
微分積分学準備 例
ステップ 1
がに等しいとします。
ステップ 2
ステップ 2.1
方程式の左辺を因数分解します。
ステップ 2.1.1
項を再分類します。
ステップ 2.1.2
をで因数分解します。
ステップ 2.1.2.1
をで因数分解します。
ステップ 2.1.2.2
をで因数分解します。
ステップ 2.1.2.3
をで因数分解します。
ステップ 2.1.3
をに書き換えます。
ステップ 2.1.4
とします。をに代入します。
ステップ 2.1.5
群による因数分解。
ステップ 2.1.5.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
ステップ 2.1.5.1.1
をで因数分解します。
ステップ 2.1.5.1.2
をプラスに書き換える
ステップ 2.1.5.1.3
分配則を当てはめます。
ステップ 2.1.5.2
各群から最大公約数を因数分解します。
ステップ 2.1.5.2.1
前の2項と後ろの2項をまとめます。
ステップ 2.1.5.2.2
各群から最大公約数を因数分解します。
ステップ 2.1.5.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 2.1.6
のすべての発生をで置き換えます。
ステップ 2.1.7
をで因数分解します。
ステップ 2.1.7.1
をで因数分解します。
ステップ 2.1.7.2
をで因数分解します。
ステップ 2.1.7.3
をで因数分解します。
ステップ 2.1.8
とします。をに代入します。
ステップ 2.1.9
群による因数分解。
ステップ 2.1.9.1
項を並べ替えます。
ステップ 2.1.9.2
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
ステップ 2.1.9.2.1
をで因数分解します。
ステップ 2.1.9.2.2
をプラスに書き換える
ステップ 2.1.9.2.3
分配則を当てはめます。
ステップ 2.1.9.2.4
にをかけます。
ステップ 2.1.9.3
各群から最大公約数を因数分解します。
ステップ 2.1.9.3.1
前の2項と後ろの2項をまとめます。
ステップ 2.1.9.3.2
各群から最大公約数を因数分解します。
ステップ 2.1.9.4
最大公約数を因数分解して、多項式を因数分解します。
ステップ 2.1.10
因数分解。
ステップ 2.1.10.1
のすべての発生をで置き換えます。
ステップ 2.1.10.2
不要な括弧を削除します。
ステップ 2.2
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.3
をに等しくし、を解きます。
ステップ 2.3.1
がに等しいとします。
ステップ 2.3.2
についてを解きます。
ステップ 2.3.2.1
方程式の両辺からを引きます。
ステップ 2.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
ステップ 2.3.2.3
を簡約します。
ステップ 2.3.2.3.1
をに書き換えます。
ステップ 2.3.2.3.2
をに書き換えます。
ステップ 2.3.2.3.3
をに書き換えます。
ステップ 2.3.2.3.4
をに書き換えます。
ステップ 2.3.2.3.5
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 2.3.2.3.6
をの左に移動させます。
ステップ 2.3.2.4
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2.3.2.4.1
まず、の正の数を利用し、1番目の解を求めます。
ステップ 2.3.2.4.2
次に、の負の値を利用し。2番目の解を求めます。
ステップ 2.3.2.4.3
完全解は、解の正と負の部分の両方の計算結果です。
ステップ 2.4
をに等しくし、を解きます。
ステップ 2.4.1
がに等しいとします。
ステップ 2.4.2
についてを解きます。
ステップ 2.4.2.1
方程式の両辺からを引きます。
ステップ 2.4.2.2
の各項をで割り、簡約します。
ステップ 2.4.2.2.1
の各項をで割ります。
ステップ 2.4.2.2.2
左辺を簡約します。
ステップ 2.4.2.2.2.1
の共通因数を約分します。
ステップ 2.4.2.2.2.1.1
共通因数を約分します。
ステップ 2.4.2.2.2.1.2
をで割ります。
ステップ 2.4.2.2.3
右辺を簡約します。
ステップ 2.4.2.2.3.1
分数の前に負数を移動させます。
ステップ 2.5
をに等しくし、を解きます。
ステップ 2.5.1
がに等しいとします。
ステップ 2.5.2
方程式の両辺にを足します。
ステップ 2.6
最終解はを真にするすべての値です。
ステップ 3