問題を入力...
微分積分学準備 例
ステップ 1
式が未定義である場所を求めます。
ステップ 2
垂直漸近線は無限が不連続になる場所で発生します。
垂直漸近線がありません
ステップ 3
が分子の次数、が分母の次数である有理関数を考えます。
1. のとき、x軸は水平漸近線です。
2. のとき、水平漸近線は線です。
3. のとき、水平漸近線はありません(斜めの漸近線があります)。
ステップ 4
とを求めます。
ステップ 5
なので、水平漸近線はありません。
水平漸近線がありません
ステップ 6
ステップ 6.1
との共通因数を約分します。
ステップ 6.1.1
をで因数分解します。
ステップ 6.1.2
共通因数を約分します。
ステップ 6.1.2.1
を乗します。
ステップ 6.1.2.2
をで因数分解します。
ステップ 6.1.2.3
共通因数を約分します。
ステップ 6.1.2.4
式を書き換えます。
ステップ 6.1.2.5
をで割ります。
ステップ 6.2
多項式の割り算から多項式の部分がないので、斜めの漸近線はありません。
斜めの漸近線がありません
斜めの漸近線がありません
ステップ 7
すべての漸近線の集合です。
垂直漸近線がありません
水平漸近線がありません
斜めの漸近線がありません
ステップ 8