微分積分学準備 例

Решить относительно x cos(8x)=-1
ステップ 1
方程式の両辺の逆余弦をとり、余弦の中からを取り出します。
ステップ 2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.1
の厳密値はです。
ステップ 3
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
の各項をで割ります。
ステップ 3.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 3.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.2.1.1
共通因数を約分します。
ステップ 3.2.1.2
で割ります。
ステップ 4
余弦関数は、第二象限と第三象限で負となります。2番目の解を求めるには、から参照角を引き、第三象限で解を求めます。
ステップ 5
について解きます。
タップして手順をさらに表示してください…
ステップ 5.1
からを引きます。
ステップ 5.2
の各項をで割り、簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.1
の各項をで割ります。
ステップ 5.2.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 5.2.2.1.1
共通因数を約分します。
ステップ 5.2.2.1.2
で割ります。
ステップ 6
の周期を求めます。
タップして手順をさらに表示してください…
ステップ 6.1
関数の期間はを利用して求めることができます。
ステップ 6.2
周期の公式ので置き換えます。
ステップ 6.3
絶対値は数と0の間の距離です。の間の距離はです。
ステップ 6.4
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 6.4.1
で因数分解します。
ステップ 6.4.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 6.4.2.1
で因数分解します。
ステップ 6.4.2.2
共通因数を約分します。
ステップ 6.4.2.3
式を書き換えます。
ステップ 7
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数