問題を入力...
微分積分学準備 例
ステップ 1
方程式の両辺からを引きます。
ステップ 2
ステップ 2.1
の各項をで割ります。
ステップ 2.2
左辺を簡約します。
ステップ 2.2.1
の共通因数を約分します。
ステップ 2.2.1.1
共通因数を約分します。
ステップ 2.2.1.2
をで割ります。
ステップ 2.3
右辺を簡約します。
ステップ 2.3.1
分数の前に負数を移動させます。
ステップ 2.3.2
にをかけます。
ステップ 2.3.3
分母を組み合わせて簡約します。
ステップ 2.3.3.1
にをかけます。
ステップ 2.3.3.2
を乗します。
ステップ 2.3.3.3
を乗します。
ステップ 2.3.3.4
べき乗則を利用して指数を組み合わせます。
ステップ 2.3.3.5
とをたし算します。
ステップ 2.3.3.6
をに書き換えます。
ステップ 2.3.3.6.1
を利用し、をに書き換えます。
ステップ 2.3.3.6.2
べき乗則を当てはめて、指数をかけ算します。
ステップ 2.3.3.6.3
とをまとめます。
ステップ 2.3.3.6.4
の共通因数を約分します。
ステップ 2.3.3.6.4.1
共通因数を約分します。
ステップ 2.3.3.6.4.2
式を書き換えます。
ステップ 2.3.3.6.5
指数を求めます。
ステップ 3
方程式の両辺の逆余接をとり、余接の中からを取り出します。
ステップ 4
ステップ 4.1
の厳密値はです。
ステップ 5
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
ステップ 6
ステップ 6.1
にをたし算します。
ステップ 6.2
の結果の角度は正でと隣接します。
ステップ 7
ステップ 7.1
関数の期間はを利用して求めることができます。
ステップ 7.2
周期の公式のをで置き換えます。
ステップ 7.3
絶対値は数と0の間の距離です。との間の距離はです。
ステップ 7.4
をで割ります。
ステップ 8
関数の周期がなので、両方向でラジアンごとに値を繰り返します。
、任意の整数
ステップ 9
答えをまとめます。
、任意の整数