問題を入力...
微分積分学準備 例
ステップ 1
方程式の各項を簡約し、右辺をに等しくします。楕円または双曲線の標準形は、方程式の右辺がに等しいことが必要です。
ステップ 2
楕円の形です。この形を利用して、楕円の長軸と短軸、および中心を求めるために使用する値を決定します。
ステップ 3
この楕円の中の値を標準形の値と一致させます。変数は楕円の長軸の半径を、は楕円の短軸の半径を、は原点からのx補正値を、は原点からのy補正値を表します。
ステップ 4
楕円の中心はの形に従います。との値に代入します。
ステップ 5
ステップ 5.1
次の式を利用して楕円の中心から焦点までの距離を求めます。
ステップ 5.2
との値を公式に代入します。
ステップ 5.3
簡約します。
ステップ 5.3.1
を乗します。
ステップ 5.3.2
を乗します。
ステップ 5.3.3
にをかけます。
ステップ 5.3.4
からを引きます。
ステップ 6
ステップ 6.1
楕円の1番目の頂点は、をに加えることで求められます。
ステップ 6.2
と、およびの既知数を公式に代入します。
ステップ 6.3
簡約します。
ステップ 6.4
The second vertex of an ellipse can be found by subtracting from .
ステップ 6.5
と、およびの既知数を公式に代入します。
ステップ 6.6
簡約します。
ステップ 6.7
楕円には2つの頂点があります。
:
:
:
:
ステップ 7
ステップ 7.1
楕円の1番目の焦点は、をに加えることで求められます。
ステップ 7.2
と、およびの既知数を公式に代入します。
ステップ 7.3
簡約します。
ステップ 7.4
楕円の1番目の焦点は、からを引くことで求められます。
ステップ 7.5
と、およびの既知数を公式に代入します。
ステップ 7.6
簡約します。
ステップ 7.7
楕円には2つの焦点があります。
:
:
:
:
ステップ 8
ステップ 8.1
次の公式を利用して離心率を求めます。
ステップ 8.2
との値を公式に代入します。
ステップ 8.3
分子を簡約します。
ステップ 8.3.1
を乗します。
ステップ 8.3.2
を乗します。
ステップ 8.3.3
にをかけます。
ステップ 8.3.4
からを引きます。
ステップ 9
これらの値は楕円をグラフ化し、解析するための重要な値を表しています。
中心:
:
:
:
:
偏心:
ステップ 10