問題を入力...
微分積分学準備 例
ステップ 1
の被開数を以上として、式が定義である場所を求めます。
ステップ 2
ステップ 2.1
不等式を方程式に変換します。
ステップ 2.2
方程式の左辺を因数分解します。
ステップ 2.2.1
をで因数分解します。
ステップ 2.2.1.1
をで因数分解します。
ステップ 2.2.1.2
をで因数分解します。
ステップ 2.2.1.3
をで因数分解します。
ステップ 2.2.2
をに書き換えます。
ステップ 2.2.3
因数分解。
ステップ 2.2.3.1
両項とも完全平方なので、平方の差の公式を利用して、因数分解します。このとき、であり、です。
ステップ 2.2.3.2
不要な括弧を削除します。
ステップ 2.3
方程式の左辺の個々の因数がと等しいならば、式全体はと等しくなります。
ステップ 2.4
をに等しくし、を解きます。
ステップ 2.4.1
がに等しいとします。
ステップ 2.4.2
についてを解きます。
ステップ 2.4.2.1
方程式の両辺の指定した根をとり、左辺の指数を消去します。
ステップ 2.4.2.2
を簡約します。
ステップ 2.4.2.2.1
をに書き換えます。
ステップ 2.4.2.2.2
正の実数と仮定して、累乗根の下から項を取り出します。
ステップ 2.4.2.2.3
プラスマイナスはです。
ステップ 2.5
をに等しくし、を解きます。
ステップ 2.5.1
がに等しいとします。
ステップ 2.5.2
方程式の両辺からを引きます。
ステップ 2.6
をに等しくし、を解きます。
ステップ 2.6.1
がに等しいとします。
ステップ 2.6.2
方程式の両辺にを足します。
ステップ 2.7
最終解はを真にするすべての値です。
ステップ 2.8
各根を利用して検定区間を作成します。
ステップ 2.9
各区間から試験値を選び、この値を元の不等式に代入して、どの区間が不等式を満たすか判定します。
ステップ 2.9.1
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 2.9.1.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 2.9.1.2
を元の不等式ので置き換えます。
ステップ 2.9.1.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
真
真
ステップ 2.9.2
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 2.9.2.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 2.9.2.2
を元の不等式ので置き換えます。
ステップ 2.9.2.3
左辺は右辺より小さいです。つまり、与えられた文は偽です。
偽
偽
ステップ 2.9.3
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 2.9.3.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 2.9.3.2
を元の不等式ので置き換えます。
ステップ 2.9.3.3
左辺は右辺より小さいです。つまり、与えられた文は偽です。
偽
偽
ステップ 2.9.4
区間の値を検定し、この値によって不等式が真になるか確認します。
ステップ 2.9.4.1
区間の値を選び、この値によって元の不等式が真になるか確認します。
ステップ 2.9.4.2
を元の不等式ので置き換えます。
ステップ 2.9.4.3
左辺は右辺より大きいです。つまり、与えられた文は常に真です。
真
真
ステップ 2.9.5
区間を比較して、どちらが元の不等式を満たすか判定します。
真
偽
偽
真
真
偽
偽
真
ステップ 2.10
解はすべての真の区間からなります。
またはまたは
ステップ 2.11
区間をまとめます。
ステップ 3
定義域は式が定義になるのすべての値です。
区間記号:
集合の内包的記法:
ステップ 4