微分積分学準備 例

定義域を求める x^2-16の平方根
x2-16x216
ステップ 1
x2-16x216の被開数を00以上として、式が定義である場所を求めます。
x2-160x2160
ステップ 2
xxについて解きます。
タップして手順をさらに表示してください…
ステップ 2.1
不等式の両辺に1616を足します。
x216x216
ステップ 2.2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
x216x216
ステップ 2.3
方程式を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.1
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.1.1
累乗根の下から項を取り出します。
|x|16|x|16
|x|16|x|16
ステップ 2.3.2
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1
1616を簡約します。
タップして手順をさらに表示してください…
ステップ 2.3.2.1.1
16164242に書き換えます。
|x|42|x|42
ステップ 2.3.2.1.2
累乗根の下から項を取り出します。
|x||4||x||4|
ステップ 2.3.2.1.3
絶対値は数と0の間の距離です。0044の間の距離は44です。
|x|4|x|4
|x|4|x|4
|x|4|x|4
|x|4|x|4
ステップ 2.4
|x|4|x|4を区分で書きます。
タップして手順をさらに表示してください…
ステップ 2.4.1
1番目の区分の区間を求めるために、絶対値の中が負でない場所を求めます。
x0x0
ステップ 2.4.2
xxが負でない区分では、絶対値を削除します。
x4x4
ステップ 2.4.3
2番目の区分の区間を求めるために、絶対値の中が負になる場所を求めます。
x<0x<0
ステップ 2.4.4
xxが負である区分では、絶対値を取り除き-11を掛けます。
-x4x4
ステップ 2.4.5
区分で書きます。
{x4x0-x4x<0{x4x0x4x<0
{x4x0-x4x<0{x4x0x4x<0
ステップ 2.5
x4x4x0x0の交点を求めます。
x4x4
ステップ 2.6
-x4x4の各項を-11で割り、簡約します。
タップして手順をさらに表示してください…
ステップ 2.6.1
-x4x4の各項を-11で割ります。不等式の両辺を負の値でかけ算またはわり算するとき、不等号の向きを逆にします。
-x-14-1x141
ステップ 2.6.2
左辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.6.2.1
2つの負の値を割ると正の値になります。
x14-1x141
ステップ 2.6.2.2
xx11で割ります。
x4-1x41
x4-1x41
ステップ 2.6.3
右辺を簡約します。
タップして手順をさらに表示してください…
ステップ 2.6.3.1
44-1で割ります。
x-4
x-4
x-4
ステップ 2.7
解の和集合を求めます。
x-4またはx4
x-4またはx4
ステップ 3
定義域は式が定義になるxのすべての値です。
区間記号:
(-,-4][4,)
集合の内包的記法:
{x|x-4,x4}
ステップ 4
 [x2  12  π  xdx ]