微分積分学準備 例

グラフ化する f(x)=- x-1+3の自然対数
Step 1
漸近線を求めます。
タップして手順をさらに表示してください…
が未定義である場所を求めます。
を左からを右からとしているので、は垂直漸近線です。
対数を無視して、が分子の次数、が分母の次数である有理関数を考えます。
1. のとき、x軸は水平漸近線です。
2. のとき、水平漸近線は線です。
3. のとき、水平漸近線はありません(斜めの漸近線があります)。
なので、水平漸近線はありません。
水平漸近線がありません
対数関数と三角関数の斜めの漸近線はありません。
斜めの漸近線がありません
すべての漸近線の集合です。
垂直漸近線:
水平漸近線がありません
垂直漸近線:
水平漸近線がありません
Step 2
で点を求めます。
タップして手順をさらに表示してください…
式の変数で置換えます。
結果を簡約します。
タップして手順をさらに表示してください…
各項を簡約します。
タップして手順をさらに表示してください…
からを引きます。
の自然対数はです。
をかけます。
をたし算します。
最終的な答えはです。
を10進数に変換します。
Step 3
で点を求めます。
タップして手順をさらに表示してください…
式の変数で置換えます。
結果を簡約します。
タップして手順をさらに表示してください…
からを引きます。
最終的な答えはです。
を10進数に変換します。
Step 4
で点を求めます。
タップして手順をさらに表示してください…
式の変数で置換えます。
結果を簡約します。
タップして手順をさらに表示してください…
からを引きます。
最終的な答えはです。
を10進数に変換します。
Step 5
対数関数は、における垂直漸近線と点を利用してグラフにすることができます。
垂直漸近線:
Step 6
Cookie & プライバシー
当社のウェブサイトで最高の経験をしていただくため、本ウェブサイトはCookieを利用しています。
詳細情報