微分積分学準備 例

平均変化率を求める f(x)=cos(x) , [-pi/3,pi/3]
,
ステップ 1
を方程式で書きます。
ステップ 2
平均変化率の公式を利用して代入します。
タップして手順をさらに表示してください…
ステップ 2.1
関数の平均変化率は、2点の値の変化を2点の値の変化で割ることで求めることができます。
ステップ 2.2
に代入し、関数のを対応する値に置換します。
ステップ 3
式を簡約します。
タップして手順をさらに表示してください…
ステップ 3.1
分数の分子と分母にを掛けます。
タップして手順をさらに表示してください…
ステップ 3.1.1
をかけます。
ステップ 3.1.2
まとめる。
ステップ 3.2
分配則を当てはめます。
ステップ 3.3
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.3.1
共通因数を約分します。
ステップ 3.3.2
式を書き換えます。
ステップ 3.4
分子を簡約します。
タップして手順をさらに表示してください…
ステップ 3.4.1
で因数分解します。
ステップ 3.4.2
の厳密値はです。
ステップ 3.4.3
角度が以上より小さくなるまでの回転を加えます。
ステップ 3.4.4
第一象限で等しい三角の値を持つ角度を求め、参照角を当てはめます。
ステップ 3.4.5
の厳密値はです。
ステップ 3.4.6
公分母の分子をまとめます。
ステップ 3.4.7
からを引きます。
ステップ 3.4.8
で割ります。
ステップ 3.5
分母を簡約します。
タップして手順をさらに表示してください…
ステップ 3.5.1
を掛けます。
タップして手順をさらに表示してください…
ステップ 3.5.1.1
をかけます。
ステップ 3.5.1.2
をかけます。
ステップ 3.5.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.5.2.1
共通因数を約分します。
ステップ 3.5.2.2
式を書き換えます。
ステップ 3.5.3
をたし算します。
ステップ 3.6
今日数因数で約分することで式を約分します。
タップして手順をさらに表示してください…
ステップ 3.6.1
をかけます。
ステップ 3.6.2
の共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.6.2.1
で因数分解します。
ステップ 3.6.2.2
共通因数を約分します。
タップして手順をさらに表示してください…
ステップ 3.6.2.2.1
で因数分解します。
ステップ 3.6.2.2.2
共通因数を約分します。
ステップ 3.6.2.2.3
式を書き換えます。
ステップ 3.6.3
で割ります。